Chapter 4

Graphs and Transformations

Chapter Overview

1. Polynomial Graphs
a. Cubic Graphs
b. Quartic Graphs
c. Reciprocal Graphs

2. Points of Intersection

3. Graph Transformations

Understand and use graphs of functions; sketch curves defined by simple equations including polynomials
$y=\frac{a}{x}$ and $y=\frac{a}{x^{2}}$
(including their vertical and horizontal asymptotes)

Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations.

Graph to include simple cubic and quartic functions,
e.g. sketch the graph with equation $y=x^{2}(2 x-1)^{2}$

The asymptotes will be parallel to the axes e.g. the asymptotes of the curve with equation $y=\frac{2}{x+a}+b$ are the lines with equations $y=b$ and $x=-a$

Understand the effect of simple transformations on the graph of $y=\mathrm{f}(x)$, including sketching associated graphs:
$y=a \mathrm{f}(x), \quad y=\mathrm{f}(x)+a$,
$y=\mathrm{f}(x+a), y=\mathrm{f}(a x)$
and combinations of these transformations

Students should be able to find the graphs of $y=|\mathrm{f}(x)|$ and $y=|\mathrm{f}(-x)|$, given the graph of $y=\mathrm{f}(x)$.

Students should be able to apply a combination of these transformations to any of the functions in the A Level specification (quadratics, cubics, quartics, reciprocal, $\frac{a}{x^{2}},|x|, \sin x, \cos x, \tan x, \mathrm{e}^{x}$ and a^{x}) and sketch the resulting graph.

Given the graph of $y=\mathrm{f}(x)$, students
should be able to sketch the graph of, e.g.
$y=2 \mathrm{f}(3 x)$, or $y=\mathrm{f}(-x)+1$,
and should be able to sketch
(for example)
$y=3+\sin 2 x, y=-\cos \left(x+\frac{\pi}{4}\right)$

Polynomial Graphs

Equation	If $a>0$	Resulting Shape	If $a<0$	Resulting Shape
$y=a x^{2}+b x+c$	As $x \rightarrow \infty, y \rightarrow \infty$ As $x \rightarrow-\infty, y \rightarrow \infty$		As $x \rightarrow \infty, y \rightarrow-\infty$ As $x \rightarrow-\infty, y \rightarrow-\infty$	
$y=a x^{3}+b x^{2}$ $+c x+d$				
$y=a x^{4}+b x^{3}+$ $c x^{2}+d x+e$				
$y=a x^{5}+b x^{4}+\cdots$				

Cubics

Examples

1. Sketch the curve with equation $y=(x-2)(1-x)(1+x)$

We consider the shape, the roots and the y -intercept.
2. Sketch the curve with equation $y=x^{2}(x-1)$
3. Sketch the curve with equation $y=(2-x)(x+1)^{2}$
4. Sketch the curve with equation $y=(x-4)^{3}$

5. Sketch the curve with equation $y=(x+1)\left(x^{2}+x+1\right)$

Finding the equation: example

The graph shows a sketch of the curve C with equation $y=f(x)$. The curve C passes through the point $(-1,0)$ and touches the x-axis at the point $(2,0)$. The curve C has a maximum at the point (0,4). The equation of the curve C can be written in the form $y=x^{3}+a x^{2}+b x+c$ where a, b and c are integers.

Calculate the values of a, b, c.

Test Your Understanding:

1. Sketch the curve with equation $y=x(x-3)^{2}$
2. Sketch the curve with equation $y=-(x+2)^{3}$
3. A curve has this shape, touches the x axis at 3 and crosses the x axis at -2 . Give a suitable equation for this graph.

4. Extension. Sketch the curve with equation $y=2 x^{2}(x-1)(x+1)^{3}$
[MAT 2012 1E] Which one of the following equations could possibly have the graph given below?

A) $y=(3-x)^{2}(3+x)^{2}(1-x)$
B) $y=-x^{2}(x-9)\left(x^{2}-3\right)$
C) $y=(x-6)(x-2)^{2}(x+2)^{2}$
D) $y=\left(x^{2}-1\right)^{2}(3-x)$
[MAT 2011 1A] A sketch of the graph $y=x^{3}-x^{2}-x+1$ appears on which of the following axis?

(b)
(a)

(c)

(d)
