Chapter 4

Graphs and Transformations

Chapter Overview

- 1. Polynomial Graphs
 - a. Cubic Graphs
 - b. Quartic Graphs
 - c. Reciprocal Graphs
- 2. Points of Intersection
- 3. Graph Transformations

Understand and use graphs of functions; sketch curves defined by simple equations including polynomials

e.g. sketch the graph with equation
$$y = x^2(2x-1)^2$$

$$y = \frac{a}{x}$$
 and $y = \frac{a}{x^2}$

(including their vertical and horizontal asymptotes)

Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations. The asymptotes will be parallel to the axes e.g. the asymptotes of the curve with equation $y = \frac{2}{x+a} + b$ are the lines with equations y = b and x = -a

Understand the effect of simple transformations on the graph of y = f(x), including sketching associated graphs:

$$y = a\mathbf{f}(x), \quad y = \mathbf{f}(x) + a,$$

 $y = \mathbf{f}(x + a), \quad y = \mathbf{f}(ax)$

and combinations of these transformations

Students should be able to find the graphs of y = |f(x)| and y = |f(-x)|, given the graph of y = f(x).

Students should be able to apply a combination of these transformations to any of the functions in the A Level specification (quadratics, cubics, quartics,

reciprocal, $\frac{a}{x^2}$, |x|, $\sin x$, $\cos x$, $\tan x$, e^x and a^x) and sketch the resulting graph.

Given the graph of y = f(x), students

Given the graph of y = f(x), students should be able to sketch the graph of, e.g. y = 2f(3x), or y = f(-x) + 1,

and should be able to sketch (for example)

$$y=3+\sin 2x$$
, $y=-\cos\left(x+\frac{\pi}{4}\right)$

Polynomial Graphs

Equation	If $a > 0$	Resulting Shape	If $a < 0$	Resulting Shape
9 000 1 000 1 0	As $x \to \infty$, $y \to \infty$ As $x \to -\infty$, $y \to \infty$		As $x \to \infty$, $y \to -\infty$ As $x \to -\infty$, $y \to -\infty$	
$y = ax^3 + bx^2 + cx + d$				
$y = ax^4 + bx^3 + cx^2 + dx + e$				
$y = ax^5 + bx^4 + \cdots$				

<u>Cubics</u>

Examples

1. Sketch the curve with equation y = (x - 2)(1 - x)(1 + x)

We consider the shape, the roots and the y – intercept.

2. Sketch the curve with equation $y = x^2(x - 1)$

3. Sketch the curve with equation $y = (2 - x)(x + 1)^2$

4. Sketch the curve with equation $y = (x - 4)^3$

5. Sketch the curve with equation $y = (x + 1)(x^2 + x + 1)$

Finding the equation: example

The graph shows a sketch of the curve C with equation y = f(x). The curve C passes through the point (-1, 0) and touches the x-axis at the point (2, 0). The curve C has a maximum at the point (0, 4). The equation of the curve C can be written in the form $y = x^3 + ax^2 + bx + c$ where a, b and c are integers.

Calculate the values of a, b, c.

Test Your Understanding:

1. Sketch the curve with equation $y = x(x-3)^2$

2. Sketch the curve with equation $y = -(x + 2)^3$

3. A curve has this shape , touches the x axis at 3 and crosses the x axis at -2. Give a suitable equation for this graph.

4. Extension. Sketch the curve with equation $y = 2x^2(x-1)(x+1)^3$

[MAT 2012 1E] Which one of the following equations could possibly have the graph given below?

A)
$$y = (3 - x)^2(3 + x)^2(1 - x)$$

B)
$$y = -x^2(x-9)(x^2-3)$$

A)
$$y = (3 - x)^2 (3 + x)^2 (1 - x)$$

B) $y = -x^2 (x - 9)(x^2 - 3)$
C) $y = (x - 6)(x - 2)^2 (x + 2)^2$
D) $y = (x^2 - 1)^2 (3 - x)$

D)
$$y = (x^2 - 1)^2(3 - x)$$

[MAT 2011 1A] A sketch of the graph $y = x^3 - x^2 - x + 1$ appears on which of the following axis?

