The Discriminant

Quickfire questions:

Equation	Discriminant	No. of distinct real roots
$x^{2}+3 x+4=0$		
$x^{2}-4 x+1=0$		
$x^{2}-4 x+4=0$		
$2 x^{2}-6 x-3=0$		
$x-4-3 x^{2}=0$		
$1-x^{2}=0$		

Example:

8. The equation $x^{2}+2 p x+(3 p+4)=0$, where p is a positive constant, has equal roots.
(a) Find the value of p.
(b) For this value of p, solve the equation $x^{2}+2 p x+(3 p+4)=0$.

Test Your Understanding:

1. $x^{2}+5 k x+(10 k+5)=0$ where k is a positive constant.

Given that this equation has equal roots, determine the value of k.
2. Find the range of values of k for which $x^{2}+6 x+k=0$ has two distinct real solutions.

Extension:

1.

[MAT 2009 1C] Given a real constant c, the equation $x^{4}=(x-c)^{2}$ has four real solutions (including possible repeated roots) for:
A) $c \leq \frac{1}{4}$
B) $-\frac{1}{4} \leq c \leq \frac{1}{4}$
C) $c \leq-\frac{1}{4}$
D) all values of c
2. [MAT 2006 1B] The equation $\left(2+x-x^{2}\right)^{2}=16$ has how many real root(s)?
3. [MAT 2011 1B] A rectangle has perimeter P and area A. The values P and A must satisfy:
A) $P^{3}>A$
B) $A^{2}>2 P+1$
C) $P^{2} \geq 16 A$
D) $P A>A+P$

