Solving by Completing the Square

Worked Examples ($a=1$):

1. $x^{2}+12 x$
2. $x^{2}+8 x$
3. $x^{2}-2 x$
4. $x^{2}-6 x+7$

More complicated examples (a not equal to 1):

1. Express $2 x^{2}+12 x+7$ in the form $a(x+b)^{2}+c$
2. Express $5-3 x^{2}+6 x$ in the form $a-b(x+c)^{2}$

Test Your Understanding:

1. Express $3 x^{2}-18 x+4$ in the form $a(x+b)^{2}+c$
2. Express $20 x-5 x^{2}+3$ in the form $a-b(x+c)^{2}$

Solving by Completing the Square:

Note: Previously we factorised out the 3 . This is because $3 x^{2}-18 x+4$ on its own is an expression, so dividing by 3 (instead of factorising) would change the expression. However, in an equation, we can divide both sides by 3 without affecting the solutions.

Example

Solve the equation $3 x^{2}-18 x+4=0$ by completing the square.

Proving the Quadratic Formula:

