Sketching Gradient Functions	
Example	
Sketch the gradient function for the function $f(x) = x^2 + 3x + 2$	

Sometimes **you won't be given the function explicitly**, you will only be given **the sketch**.

<u>Example</u>

Example 2

Test Your Understanding

Summary

Y = f(x)	Y = f'(x)
max / min	Cuts the x - axis
Point of inflection	Touches the x – axis
Positive gradient	Above the x - axis
Negative gradient	Below the x - axis
Vertical asymptote	Vertical asymptote
Horizontal asymptote	Horizontal asymptote at x-axis

Extension

[MAT 2015 1B]

$$f(x) = (x+a)^n$$

where a is a real number and n is a positive whole number, and $n \ge 2$. If y = f(x) and y = f'(x) are plotted on the same axes, the number of intersections between f(x) and f'(x) will:

- A) always be odd
- B) always be even
- C) depend on \boldsymbol{a} but not \boldsymbol{n}
- D) depend on n but not a
- E) depend on both a and n.