Sketching Gradient Functions

\square

Example

Sketch the gradient function for the function $f(x)=x^{2}+3 x+2$

Sometimes you won't be given the function explicitly, you will only be given the sketch.

Example

Example 2

Test Your Understanding

Summary

$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	$\mathrm{Y}=\mathrm{f}^{\prime}(\mathbf{x})$
max $/ \min$	Cuts the x - axis
Point of inflection	Touches the x - axis
Positive gradient	Above the x - axis
Negative gradient	Below the x - axis
Vertical asymptote	Vertical asymptote
Horizontal asymptote	Horizontal asymptote at x -axis

Extension

[MAT 2015 1B]

$$
f(x)=(x+a)^{n}
$$

where a is a real number and n is a positive whole number, and $n \geq 2$. If $y=$ $f(x)$ and $y=f^{\prime}(x)$ are plotted on the same axes, the number of intersections between $f(x)$ and $f^{\prime}(x)$ will:
A) always be odd
B) always be even
C) depend on a but not n
D) depend on n but not a
E) depend on both a and n.

