Stationary Points/ Turning Points

Examples

1. Find the coordinates of the turning points of $y = x^3 + 6x^2 - 135x$

2. Find the least value of $f(x) = x^2 - 4x + 9$

3. Find the turning point of $y = \sqrt{x} - x$

Example:

Find the stationary point on the curve with equation $y = x^4 - 32x$, and determine whether it is a local maximum, a local minimum or a point of inflection.

Method 2: Using the second derivative

At a stationary point x = a:

- If f''(a) > 0 the point is a local minimum.
- If f''(a) < 0 the point is a local maximum.
- If f''(a) = 0 it could be any type of point, so resort to Method 1.

Example:

The stationary point of $y = x^4 - 32x$ is (2, -48). Use the second derivative to classify this stationary point.

Test Your Understanding:

	The curve with equation		
	$y = x^2 - 32\sqrt{x} + 20, \qquad x > 0,$		
	has a stationary point P.		
	Use calculus		
	(<i>a</i>) to find the coordinates of <i>P</i> ,	(0)	
	(b) to determine the nature of the stationary point <i>P</i> .	(6)	

Sketching Graphs

We can sketch graphs to help classify stationary points.

Example

By first finding the stationary points, sketch the graph of $y = \frac{1}{x} + 27x^3$

Extension

(ii) ... when a = 1 (iii) when a = -2

Ex 12I page 276