

Examples

1. Find the coordinates of the turning points of $y=x^{3}+6 x^{2}-135 x$
2. Find the least value of $f(x)=x^{2}-4 x+9$
3. Find the turning point of $y=\sqrt{x}-x$

Points of Inflection

How do we tell what type of stationary point?
Method 1: Look at the gradient just before and just after the point

Commented [CL1]:

Commented [CL2R1]:

Example:
Find the stationary point on the curve with equation $y=x^{4}-32 x$, and determine whether it is a local maximum, a local minimum or a point of inflection.

Method 2: Using the second derivative
\square

At a maximum point, we can see that as x increases, the gradient is decreasing from a positive value to a negative value. value to a negative value.

$$
\therefore \frac{d^{2} y}{d x^{2}}<0
$$

At a stationary point $x=a$:

- If $f^{\prime \prime}(a)>0$ the point is a local minimum.
- If $f^{\prime \prime}(a)<0$ the point is a local maximum.
- If $f^{\prime \prime}(a)=0$ it could be any type of point, so resort to Method 1 .

Example:

The stationary point of $y=x^{4}-32 x$ is $(2,-48)$. Use the second derivative to classify this stationary point.

Test Your Understanding:

The curve with equation

$$
y=x^{2}-32 \sqrt{ } x+20, \quad x>0,
$$

has a stationary point P.
Use calculus
(a) to find the coordinates of P,
(b) to determine the nature of the stationary point P

Sketching Graphs

We can sketch graphs to help classify stationary points.

Example

By first finding the stationary points, sketch the graph of $y=\frac{1}{x}+27 x^{3}$

Extension

Extension 3 [MAT 2001 1EJThe maximum gradient of the curve

1. [MAT 2014 1C] The cubic
$y=k x^{3}-(k+1) x^{2}+(2-k) x-k$ has a turning point, that is a minimum, when $x=1$ precisely for
A) $k>0$
B) $0<k<1$
C) $k>\frac{1}{2}$
D) $k<3$
E) all values of k

2 [MAT 2004 1B] The smallest value of the function:

$$
f(x)=2 x^{3}-9 x^{2}+12 x+3
$$

In the range $0 \leq x \leq 2$ is what?
$y=x^{4}-4 x^{3}+4 x^{2}+2$ in the range $0 \leq x \leq 2 \frac{1}{5}$ occurs when:
A) $x=0$
B) $x=1-\frac{1}{\sqrt{3}} \quad$ Hint: When two curves
C) $x=1+\frac{1}{\sqrt{3}} \quad$ touch, their y values
D) $x=2 \frac{1}{5} \quad \begin{aligned} & \text { must match, but what } \\ & \text { else must also match? }\end{aligned}$
[STEP 12007 Q8] A curve is given by:
$y=a x^{3}-6 a x^{2}+(12 a+12) x-(8 a+16)$ where a is a real number. Show that this curve touches the curve with equation $y=x^{3}$ at $(2,8)$. Determine the coordinates of any other point of intersection of the two curves.
(i) Sketch on the same axes these two curves when $a=2$.
(ii)... when $a=1$ (iii) when $a=-2$

