Finding Equations of Tangents

Example
Find the equation of the tangent to the curve $y=x^{2}$ when $x=3$.

Find the equation of the normal to the curve $y=x^{2}$ when $x=3$.

Test your Understanding

Find the equation of the normal to the curve $y=x+3 \sqrt{x}$ when $x=9$.

Extension

1. [STEP I 2005 Q2]

The point P has coordinates $\left(p^{2}, 2 p\right)$ and the point Q has coordinates $\left(q^{2}, 2 q\right)$, where p and q are non-zero and $p \neq q$. The curve C is given by $y^{2}=4 x$. The point R is the intersection of the tangent to C at P and the tangent to C at Q. Show that R has coordinates ($p q, p+q$).

The point S is the intersection of the normal to C at P and the normal to C at Q. If p and q are such that $(1,0)$ lies on the line $P Q$, show that S has coordinates $\left(p^{2}+q^{2}+1, p+q\right)$, and that the quadrilateral $P S Q R$ is a rectangle.

2. STEP I 2012 Q4]

The curve C has equation $x y=\frac{1}{2}$.
The tangents to C at the distinct points $P\left(p, \frac{1}{2 p}\right)$ and $Q\left(q, \frac{1}{2 q}\right)$, where p and q are positive, intersect at T and the normal to C at these points intersect at N. Show that T is the point

$$
\left(\frac{2 p q}{p+q}, \frac{1}{p+q}\right)
$$

In the case $p q=\frac{1}{2}$, find the coordinates of N. Show (in this case) that T and N lie on the line $y=x$ and are such that the product of their distances from the origin is constant.

