10A Roots within Intervals

1. The diagram shows a sketch of the curve $y=f(x)$, where $f(x)=x^{3}-4 x^{2}+3 x+1$
a) Explain how the graph shows that $f(x)$ has a root between $x=2$ and $x=3$.

b) Show that $f(x)$ has a root between $x=1.4$ and $x=1.5$
2. The graph of the function
$f(x)=54 x^{3}-225 x^{2}+309 x-140$
is shown in the diagram.
A student observes that $f(1.1)$ and $f(1.6)$ are both negative and states that $f(x)$ has no roots in the interval [1.1,1.6]
a) Explain, referring to the diagram, why the student is incorrect

b) Calculate $f(1.3), f(1.5)$ and $f(1.7)$ and use your answer to explain why there are at least 3 roots in the interval $1.1<x<1.7$.
3.

a) Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$. Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root

b) Show that this root lies in the interval $1.7<x<1.8$
c) Given that the root of $f(x)=\alpha$, show that $\alpha=1.763$ correct to 3 decimal places

