4A Moments Introduction

1. Find the Moment about C

2. Calculate the moment of the force about point F

3. Calculate the moment of the force about point A

4B Multiple Moments

1. Calculate the sum of the moments acting about the point P

2. Calculate the sum of the moments acting about the point P

3. The diagram to the right shows 3 forces acting on a light rod.

Find the resultant moment about point P
(ie - if the rod were fixed at point P, how would it rotate?)

4C Uniform Rods

1. The diagram shows a uniform rod of length 3 m and weight 20 N resting horizontally on supports at A and C, where $A C=2 \mathrm{~m}$.
Calculate the magnitude of the normal reaction at both of the supports

2. A uniform beam, $A B$, of mass 40 kg and length 5 m , rests horizontally on supports at C and D where $\mathrm{AC}=\mathrm{DB}=1 \mathrm{~m}$.

When a man of mass 80 kg stands on the beam at E , the magnitude of the reaction at D is double the reaction at C .

By modelling the beam as a rod and the man as a particle, find the distance $A E$
3. A uniform $\operatorname{rod} P Q$ is hinged at the point P, and is held in equilibrium at an angle of 50° to the horizontal by a force of magnitude F acting perpendicular to the rod at Q. Given that the rod has a length of 3 m and a mass of 8 kg , find the value of \boldsymbol{F}.

P 50°

4D Non-Uniform Rods

1. Sam and Tamsin are sitting on a non-uniform plank $A B$ of mass 25 kg and length 4 m .

The plank is pivoted at M, the midpoint of $A B$, and the centre of mass is at C where $A C=$ 1.8 m .

Tamsin has mass 25 kg and sits at A. Sam has mass 35 kg . How far should Sam sit from A to balance the plank?
2. $A \operatorname{rod} A B$ is $3 m$ long and has weight $20 N$. It is in a horizontal position resting on supports at points C and D, where $A C=1 \mathrm{~m}$ and $A D=2.5 \mathrm{~m}$.

The magnitude of the reaction at C is three times the magnitude of the reaction at D.
Find the distance of the centre of mass of the rod from A.

4E Tipping Point

1. A uniform rod of length 4 m and mass 12 kg is resting in a horizontal position on supports at C and D , with $\mathrm{AC}=\mathrm{DB}=0.5 \mathrm{~m}$

When a particle of mass mkg is placed on the rod at point B , the rod is on the point of turning about D .

Find the value of m.
2. A non-uniform rod $A B$, of length 10 m and weight 40 N , is suspended from a pair of light cables attached to C and D where $A C=3 m$ and $B D=2 m$.

When a weight of 25 N is hung from point A the rod is on the point of rotation.
Find the distance of the centre of mass of the rod from point A.

7D Hinges

1. A Plank $A B$ of mass M and length $2 a$, rests with its end A against a rough vertical wall. The plank is held in a horizontal position by a rope. One end of the rope is attached to the plank and the other end is attached to the wall at the point C , which is vertically above A .

A small block of mass $3 M$ is placed on the plank at the point P, where $A P=x$. The plank is in equilibrium in a vertical plane which is perpendicular to the wall. The angle between the rope and the plank is α, where $\tan (\alpha)=\frac{3}{4}$, as shown.

The plank is modelled as a uniform rod, the block is modelled at a particle and the rope is modelled as a light inextensible string.
a) Using the model, show that the tension in the rope is

$$
\frac{5 M g(3 x+a)}{6 a}
$$

The magnitude of the horizontal component of the force exerted on the plane $A B$ by the wall is 2 Mg .
b) Find x in terms of a

The forces exerted on the plank by the wall acts in a direction which makes angle β with the horizontal.
c) Find the value of $\tan \beta$

The rope will break if the tension in it exceeds 5 Mg .
d) Explain how this will restrict the possible values of P

5B (old Spec) Hinges

1. A uniform rod $A B$, of mass 6 kg and length 4 m , is smoothly hinged at A. A light inextensible string is attached to the rod at a point C where $A C=3 m$, and the point D, which is vertically above point A. If the string is keeping the rod in equilibrium in a horizontal position and the angle between the string and the rod is 40°, calculate:
a) The tension in the string
b) The magnitude and direction of the reaction at the hinge.

7D Ladders

2. A uniform rod $A B$ of mass 40 kg and length 10 m rests with the end A on rough horizontal ground. The rod rests against a smooth peg C where $A C=8 \mathrm{~m}$. The rod is in limiting equilibrium at an angle of 15° to the horizontal. Find:
a) The magnitude of the reaction at C
b) The coefficient of friction between the rod and the ground
3. A ladder, $A B$, of mass m and length $3 a$, has one end A resting on rough horizontal ground. The other end, B, rests against a smooth vertical wall. A load of mass $2 m$ is fixed on the ladder at point C, where $A C=a$. The ladder is modelled as a uniform rod and the load is modelled as a particle. The ladder rests in limiting equilibrium at an angle of 60° with the ground.
Find the coefficient of friction between the ladder and the ground.
