P2 Chapter 7:: Trigonometry And Modelling

Chapter Overview

This chapter is very similar to the trigonometry chapters in Year 1. The only difference is that new trig functions: sec, cosec and cot, are introduced.

1a:: Addition Formulae

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

1b:: Double Angle Formulae

"Solve, for $0 \le x < 2\pi$, the equation $2 \tan 2y \tan y = 3$ giving your solutions to 3sf."

3:: Simplifying $a \cos x \pm b \sin x$

"Find the maximum value of $2 \sin x + \cos x$ and the value of x for which this maximum occurs."

4:: Modelling

"The sea depth of the tide at a beach can be modelled by $x = Rsin\left(\frac{2\pi t}{5} + \alpha\right)$, where t is the hours after midnight..."

	What students need to learn:			
Topics	Content		Guidance	
5 Trigonometry continued	5.5	Understand and use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ Understand and use $\sin^2 \theta + \cos^2 \theta = 1$ $\sec^2 \theta = 1 + \tan^2 \theta \text{ and}$ $\csc^2 \theta = 1 + \cot^2 \theta$	These identities may be used to solve trigonometric equations and angles may be in degrees or radians. They may also be used to prove further identities.	
	5.6	Understand and use double angle formulae; use of formulae for $\sin{(A\pm B)}$, $\cos{(A\pm B)}$, and $\tan{(A\pm B)}$, understand geometrical proofs of these formulae. Understand and use expressions for $a\cos{\theta} + b\sin{\theta}$ in the equivalent forms of $r\cos{(\theta\pm\alpha)}$ or $r\sin{(\theta\pm\alpha)}$	To include application to half angles. Knowledge of the $\tan\left(\frac{1}{2}\theta\right)$ formulae will not be required. Students should be able to solve equations such as $a\cos\theta+b\sin\theta=c$ in a given interval.	
	5.7	Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle.	Students should be able to solve equations such as $\sin (x+70^\circ) = 0.5 \text{ for } 0 < x < 360^\circ,$ $3+5\cos 2x = 1 \text{ for } -180^\circ < x < 180^\circ$ $6\cos^2 x + \sin x - 5 = 0, \ 0 \leqslant x < 360^\circ$ These may be in degrees or radians and this will be specified in the question.	
	5.8	Construct proofs involving trigonometric functions and identities.	Students need to prove identities such as $\cos x \cos 2x + \sin x \sin 2x \equiv \cos x$.	
	5.9	Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces.	Problems could involve (for example) wave motion, the height of a point on a vertical circular wheel, or the hours of sunlight throughout the year. Angles may be measured in degrees or in radians.	

Addition Formulae

Addition Formulae allow us to deal with a <u>sum or difference</u> <u>of angles</u>.

$$sin(A + B) = sin A cos B + cos A sin B$$

$$sin(A - B) = sin A cos B - cos A sin B$$

$$cos(A + B) = cos A cos B - sin A sin B$$

$$cos(A - B) = cos A cos B + sin A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$$

Do I need to memorise these?

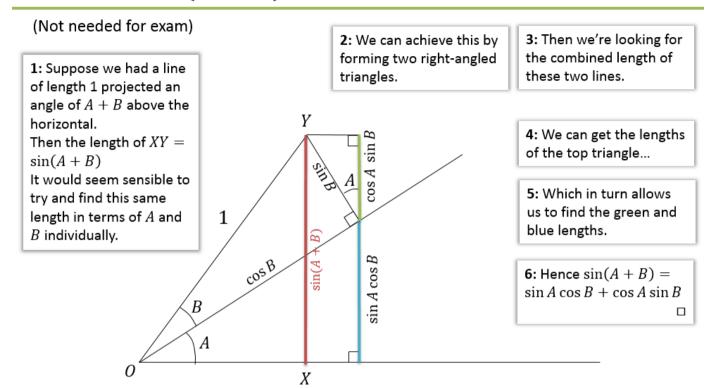
They're all technically in the formula booklet, but you REALLY want to eventually memorise these (particularly the *sin* and *cos* ones).

How to memorise:

First notice that for all of these the first thing on the RHS is the same as the first thing on the LHS!

- For sin, the operator in the middle is the same as on the LHS.
- · For cos, it's the opposite.
- For tan, it's the same in the numerator, opposite in the denominator.
- For sin, we mix sin and cos.
- For cos, we keep the cos's and sin's together.

Proof of $sin(A + B) \equiv sin A cos B + cos A sin B$



Proof of other identities

Edexcel C3 Jan 2012 Q8

(a) Starting from the formulae for $\sin(A+B)$ and $\cos(A+B)$, prove that

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

(4)

Examples

Textbook Exercise 7A Page 144

Uses of Addition Formulae

Q [Textbook] Using a suitable angle formulae, show that $\sin 15^\circ = \frac{\sqrt{6}-\sqrt{2}}{4}$.

[Textbook] Given that $\sin A = -\frac{3}{5}$ and $180^{\circ} < A < 270^{\circ}$, and that $\cos B = -\frac{12}{13}$, and B is obtuse, find the value of: (a) $\cos(A - B)$ (b) $\tan(A + B)$

Tip: You can get cos in terms of sin and vice versa by using a rearrangement of $sin^2 x + cos^2 x \equiv 1$. So $cos A = \sqrt{1 - sin^2 A}$ Given that $\sin A = -\frac{3}{5}$ and $180^{\circ} < A < 270^{\circ}$, and that $\cos B = -\frac{12}{13}$, find the value of: (b) $\tan(A+B)$

Test Your Understanding

Without using a calculator, determine the exact value of:

- a) cos(75°)
- b) tan(75°)

Challenging question

Edexcel June 2013 Q3

Given that

$$2\cos(x+50)^{\circ} = \sin(x+40)^{\circ}$$
.

(a) Show, without using a calculator, that

$$\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ}.$$

Double Angle Formulae

Double-angle formula allow you to halve the angle within a trig function.

$$\sin(2A) \equiv 2\sin A \cos A$$

$$\cos(2A) \equiv \cos^2 A - \sin^2 A$$

$$\equiv 2\cos^2 A - 1$$

$$\equiv 1 - 2\sin^2 A$$

This first form is relatively rare.

Tip: The way I remember what way round these go is that the cos on the RHS is 'attracted' to the cos on the LHS, whereas the sin is pushed away.

$$\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$$

These are all easily derivable by just setting A=B in the compound angle formulae. e.g.

$$sin(2A) = sin(A + A)$$

$$= sin A cos A + cos A sin A$$

$$= 2 sin A cos A$$

Examples

[Textbook] Use the double-angle formulae to write each of the following as a single trigonometric ratio.

a)
$$\cos^2 50^\circ - \sin^2 50^\circ$$

b)
$$\frac{2\tan(\frac{\pi}{6})}{1-\tan^2(\frac{\pi}{6})}$$

c)
$$\frac{4 \sin 70^{\circ}}{\sec 70^{\circ}}$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2 \cos^2 x - 1$$

$$= 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

Examples

[Textbook] Given that $x = 3 \sin \theta$ and $y = 3 - 4\cos 2\theta$, eliminate θ and express y in terms of x.

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2 \cos^2 x - 1$$

$$= 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

Given that $\cos x = \frac{3}{4}$ and x is acute, find the exact value of (a) $\sin 2x$ (b) $\tan 2x$

Note: This question is an example of turning a set of **parametric equations** into a single **Cartesian** one. You will cover this in the next chapter.

Textbook Exercise 7C Page 175

Solving Trigonometric Equations

This is effectively the same type of question you encountered in Chapter 6 and in Year 1, except you may need to use either the addition formulae or double angle formulae.

[Textbook] Solve $3\cos 2x - \cos x + 2 = 0$ for $0 \le x \le 360^\circ$.

Further Examples

[Textbook] By noting that 3A = 2A + A,:

- a) Show that $\sin(3A) = 3\sin A 4\sin^3 A$.
- b) Hence or otherwise, solve, for $0 < \theta < 2\pi$, the equation $16\sin^3\theta 12\sin\theta 2\sqrt{3} = 0$

Fro Exam Note: A question pretty much just like this came up in an exam once.

[Textbook] Solve $4\cos(\theta-30^\circ)=8\sqrt{2}\sin\theta$ in the range $0\leq\theta<360^\circ.$

Test Your Understanding

Edexcel C3 Jan 2013 Q6

6. (i) Without using a calculator, find the exact value of

$$(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$$
.

You must show each stage of your working.

(5)

(ii) (a) Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form

$$k \sin^2 \theta - \sin \theta = 0$$
, stating the value of k.

(b) Hence solve, for $0 \le \theta \le 360^{\circ}$, the equation

$$\cos 2\theta + \sin \theta = 1.$$

(4)

(2)

[Textbook] Solve $2\tan 2y\tan y=3$ for $0\leq y\leq 2\pi$, giving your answer to 2dp.

$a \sin \theta + b \cos \theta$

Q	Put $3 \sin x + 4 \cos x$ in the form $R \sin(x + \alpha)$ giving α in degrees to 1dp.				
	STEP 1: Expanding:				
	STEP 2: Comparing coefficients:				
	STEP 3: Using the fact that $R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = R^2$:				
	STEP 4: Using the fact that $\frac{R \sin \alpha}{R \cos \alpha} = \tan \alpha$:				
	STEP 5: Put values back into original expression.				

Test Your Understanding

Q Put $\sin x + \cos x$ in the form $R \sin(x + \alpha)$ giving α in terms of π .

Q Put $\sin x - \sqrt{3}\cos x$ in the form $R\sin(x-\alpha)$ giving α in terms of π .

Tip: This is an exam favourite!

(Without using calculus), find the maximum value of $12\cos\theta+5\sin\theta$, and give the smallest positive value of θ at which it arises.

Expression	Maximum	(Smallest) $ heta$ at max
$20 \sin \theta$		
$5-10\sin\theta$		
$3\cos(\theta + 20^\circ)$		
$\frac{2}{10+3\sin(\theta-30)}$		

Further Test Your Understanding

Edexcel C3 Jan 2013 Q4

4. (a) Express 6 cos θ + 8 sin θ in the form R cos $(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the value of α to 3 decimal places.

(4)

(b)

$$p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, \quad 0 \le \theta \le 2\pi.$$

Calculate

- (i) the maximum value of $p(\theta)$,
- (ii) the value of θ at which the maximum occurs.

(4)

Proving Trigonometric Identities

Just like Chapter 6 had 'provey' and 'solvey' questions, we also get the 'provey' questions in Chapter 7. Just use the appropriate double angle or addition formula.

Prove that
$$\tan 2\theta \equiv \frac{2}{\cot \theta - \tan \theta}$$

Prove that
$$\frac{1-\cos 2\theta}{\sin 2\theta} \equiv \tan \theta$$

Test Your Understanding

[OCR] Prove that $\cot 2x + \csc 2x \equiv \cot x$

[OCR] By writing $\cos x = \cos\left(2 \times \frac{x}{2}\right)$ or otherwise, prove the identity $\frac{1-\cos x}{1+\cos x} \equiv \tan^2\left(\frac{x}{2}\right)$

Very Challenging Exam Example

Edexcel C3 June 2015 Q8

(a) Prove that

$$\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A - \sin A}, \qquad A \neq \frac{(2n+1)\pi}{4}, \ n \in \mathbb{Z}$$

(5)

(b) Hence solve, for $0 \le \theta < 2\pi$,

$$\sec 2\theta + \tan 2\theta = \frac{1}{2}$$

Give your answers to 3 decimal places.

(4)

Modelling

[June 2013 (Withdrawn) Q8]

(a) Express $9\cos\theta - 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$

Give the exact value of R and give the value of α to 4 decimal places. (3)

- (b) (i) State the maximum value of $9\cos\theta 2\sin\theta$
 - (ii) Find the value of θ , for $0 < \theta < 2\pi$, at which this maximum occurs.

Ruth models the height *H* above the ground of a passenger on a Ferris wheel by the equation

$$H = 10 - 9\cos\left(\frac{\pi t}{5}\right) + 2\sin\left(\frac{\pi t}{5}\right)$$

where H is measured in metres and t is the time in minutes after the wheel starts turning.

(3)

(2)

- (c) Calculate the maximum value of H predicted by this model, and the value of t, when this maximum first occurs. Give your answers to 2 decimal places. (4)
- (d) Determine the time for the Ferris wheel to complete two revolutions.

When trigonometric equations are in the form $Rsin(ax \pm b)$ or $Rcos(ax \pm b)$, they can be used to model various things which have an oscillating behaviour, e.g. tides, the swing of a pendulum and sound waves.

Test Your Understanding

[June 2010 Q7] 2. (a) Express
$$2 \sin \theta - 1.5 \cos \theta$$
 in the form $R \sin (\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.

Give the value of α to 4 decimal places.

(3)

- (b) (i) Find the maximum value of $2 \sin \theta 1.5 \cos \theta$.
 - (ii) Find the value of θ , for $0 \le \theta < \pi$, at which this maximum occurs.

(3)

Tom models the height of sea water, H metres, on a particular day by the equation

$$H = 6 + 2 \sin\left(\frac{4\pi t}{25}\right) - 1.5 \cos\left(\frac{4\pi t}{25}\right), \quad 0 \le t < 12,$$

where t hours is the number of hours after midday.

- (c) Calculate the maximum value of H predicted by this model and the value of t, to 2 decimal places, when this maximum occurs.
 (3)
- (d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres. (6)

Tip: Reflect carefully on the substitution you use to allow (bii) to match your identity in (a). $\theta = ?$