P2 Chapter 6 :: Trigonometry

Chapter Overview

This chapter is very similar to the trigonometry chapters in Year 1. The only difference is that new trig functions: *sec*, *cosec* and *cot*, are introduced.

1:: Understanding *sec*, *cosec*, *tan* and draw their graphs.

"Draw a graph of y = cosec x for $0 \le x < 2\pi$."

2:: 'Solvey' questions.

"Solve, for $0 \le x < 2\pi$, the equation $2cosec^2x + \cot x = 5$ giving your solutions to 3sf."

4:: Inverse trig functions and their domains/ranges.

"Show that, when θ is small, $\sin 5\theta + \tan 2\theta - \cos 2\theta \approx 2\theta^2 + 7\theta - 1$."

3:: 'Provey' questions.

"Prove that $\sec x - \cos x \equiv \sin x \tan x$

Specification

Understand and use the	Angles measured in both degrees and
definitions of secant, cosecant	radians.
-	
-	
their graphs; their ranges and	
	Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent; understanding of their graphs; their ranges and

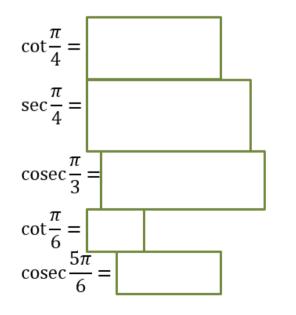
5.5	Understand and use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ Understand and use $\sin^2 \theta + \cos^2 \theta = 1$ $\sec^2 \theta = 1 + \tan^2 \theta$ and $\csc^2 \theta = 1 + \cot^2 \theta$	These identities may be used to solve trigonometric equations and angles may be in degrees or radians. They may also be used to prove further identities.
5.6	Understand and use double angle formulae; use of formulae for sin $(A \pm B)$, cos $(A \pm B)$, and tan $(A \pm B)$, understand geometrical proofs of these formulae.	To include application to half angles. Knowledge of the $\tan(\frac{1}{2}\theta)$ formulae will <i>not</i> be required.
	Students should be able to solve equations such as $a \cos \theta + b \sin \theta = c$ in a given interval.	
5.7	Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle.	Students should be able to solve equations such as $sin (x + 70^\circ) = 0.5$ for $0 < x < 360^\circ$, $3 + 5 \cos 2x = 1$ for $-180^\circ < x < 180^\circ$ $6 \cos^2 x + \sin x - 5 = 0$, $0 \le x < 360^\circ$ These may be in degrees or radians and this will be specified in the question.
5.8	Construct proofs involving trigonometric functions and identities.	Students need to prove identities such as $\cos x \cos 2x + \sin x \sin 2x \equiv \cos x$.
5.9	Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces.	Problems could involve (for example) wave motion, the height of a point on a vertical circular wheel, or the hours of sunlight throughout the year. Angles may be measured in degrees or in radians.

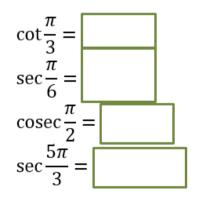
Reciprocal Trigonometric Functions

$$\sec(x) = \frac{1}{\cos(x)}$$
Short for "secant"
$$\csc(x) = \frac{1}{\sin(x)}$$
Short for "cosecant"
$$\cot(x) = \frac{1}{\tan(x)} \text{ or } \frac{\cos(x)}{\sin(x)}$$
Short for "cotangent"

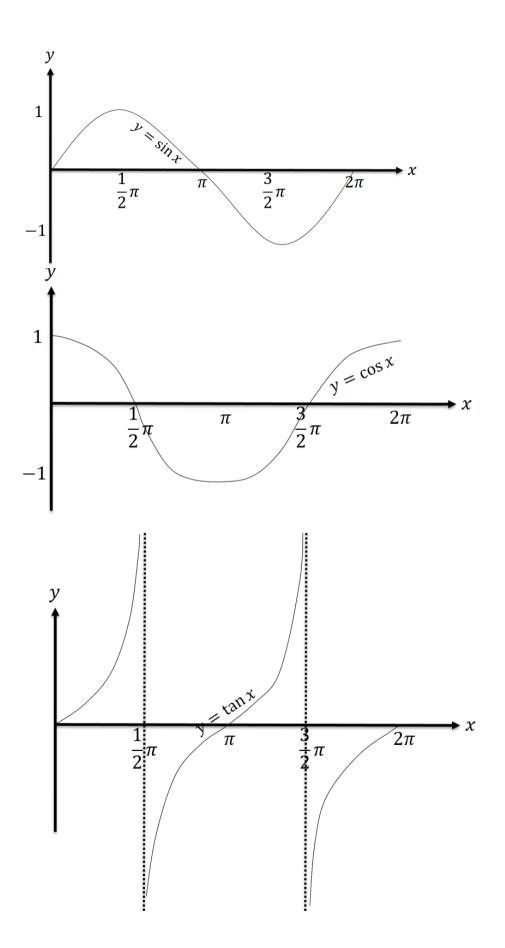
Calculations

You have a calculator in A Level exams, but won't however in STEP, etc. It's good however to know how to calculate certain values yourself if needed.





To draw a graph of y = cosec x, start with a graph of y = sin x, then consider what happens when we reciprocate each y value.



Example

[Textbook]

- a) Sketch the graph of y = 4cosec x, $-\pi \le x \le \pi$.
- b) On the same axes, sketch the line y = x.
- c) State the number of solutions to the equation $4cosec \ x x = 0$, $-\pi \le x \le \pi$

Test Your Understanding

Sketch $y = -1 + \sec 2x$ in the interval $0 \le x < 360^{\circ}$.

I

Using sec, cosec, cot

Questions in the exam usually come in two flavours: (a) 'provey' questions requiring to prove some identity and (b) 'solvey' questions.

[Textbook]

- (a) Simplify $\sin\theta \cot\theta \sec\theta$
- (b) Simplify $\sin\theta\cos\theta$ (sec θ + cosec θ)
- (c) Prove that $\frac{\cot\theta \ cosec \ \theta}{\sec^2 \theta + cosec^2 \ \theta} \equiv \cos^3 \theta$

Tip 1: Get everything in terms of sin and cos first (using $\cot x = \frac{\cos x}{\sin x}$ rather than $\cot x = \frac{1}{\tan x}$

Tip 2: Whenever you have algebraic fractions being added/subtracted, whether $\frac{a}{b} + \frac{c}{d}$ or $\frac{a}{b} + c$, combine them into one (as we can typically then use $\sin^2 x + \cos^2 x = 1$)

Test Your Understanding

 $\sec x - \cos x \equiv \sin x \tan x$

 $2 \quad (1 + \cos x)(\csc x - \cot x) \equiv \sin x$

Solvey Questions

[Textbook] Solve the following equations in the interval $0 \le \theta \le 360^{\circ}$:

- a) $\sec \theta = -2.5$
- b) $\cot 2\theta = 0.6$

а

Solve $\cot \theta = 0$ in the interval $0 \le \theta \le 2\pi$.

Test Your Understanding

Solve in the interval $0 \le \theta < 360^{\circ}$: $cosec \ 3\theta = 2$

$$\sin^2 x + \cos^2 x = 1$$

There are just two new identities you need to know:

Dividing by $\cos^2 x$:

Dividing by $\sin^2 x$:

"Prove that $1 + \tan^2 x \equiv \sec^2 x$."

 $\sin^2 x + \cos^2 x \equiv 1$ $\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} \equiv \frac{1}{\cos^2 x}$ $\tan^2 x + 1 \equiv \sec^2 x$

Examples

[Textbook] Prove that $\csc^4 \theta - \cot^4 \theta = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$

Solve the equation $4 \csc^2 \theta - 9 = \cot \theta$ in the interval $0 \le \theta \le 360^\circ$

This is just like in AS; if you had say a mixture of $\sin \theta$, $\sin^2 \theta$, $\cos^2 \theta$: you'd change the $\cos^2 \theta$ to $1 - \sin^2 \theta$ in order to get a quadratic in terms of *sin*.

Test Your Understanding

Edexcel C3 June 2013 (R)

6. (ii) Solve, for $0 \le \theta \le 2\pi$, the equation

$$3\sec^2\theta + 3\sec\theta = 2\tan^2\theta$$

You must show all your working. Give your answers in terms of π .

(6)

 $3 \sec^2 \theta + 3 \sec \theta = 2(\sec^2 \theta - 1)$

Solve, for $0 \le x < 2\pi$, the equation $2cosec^2x + \cot x = 5$ giving your solutions to 3sf.

Inverse Trig Functions

If
$$sinx = \frac{1}{2}$$
 then $x = sin^{-1}\left(\frac{1}{2}\right)$
We also call this $arcsin(\frac{1}{2})$ so we say $x = arcsin(\frac{1}{2})$

The inverse trig functions are known as

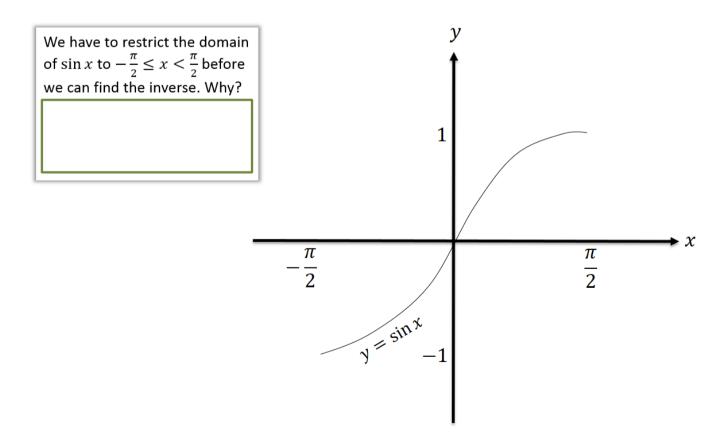
 $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$

They are inverse functions, hence

- They only exist for a one to one function
- They map from the range of the original function back to its original domain
- The graphs are reflections of the original in the line y = x.

Inverse Trig Functions

You need to know how to sketch $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$. (Yes, you could be asked in an exam!)



 $y = \arccos x$

 $y = \arctan x$

Evaluating inverse trig functions

[Textbook] Work out, in radians, the values of:

- a) $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$
- b) $\arccos(-1)$
- c) $\arctan(\sqrt{3})$

You can simply use the $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$ buttons on your calculator. If you don't have a calculator, just use the *sin*, *cos*, *tan* graphs backwards.

One Final Problem...

Edexcel C3 Jan 20078. (ii) Given that $y = \arccos x, -1 \le x \le 1$ and $0 \le y \le \pi$,(a) express $\arcsin x$ in terms of y.(b) Hence evaluate $\arccos x + \arcsin x$. Give your answer in terms of π .

(2)

(1)