9A Time-Distance Graphs

1. A cyclist rides in a straight line for 20 minutes. She waits for half an hour, then returns in a straight line to her starting point in 15 minutes. Below is a displacement-time graph for her journey.

a) Work out the average velocity for each stage of her journey, in kmh^{-1}
b) Write down the average velocity for the whole journey
c) Work out the average speed for the whole journey

2. The diagram below shows a velocity-time graph for the motion of a cyclist moving along a straight road for 12 seconds. For the first 8 seconds, she moves at a constant speed of $6 \mathrm{~ms}^{-1}$. She then decelerates at a constant rate, stopping after a further 4 seconds. Find:

a) The distance travelled by the cyclist
b) The rate of deceleration of the cyclist
3. A particle moves along a straight line. It accelerates uniformly from rest to a speed of $8 \mathrm{~ms}^{-1}$ in T seconds. The particle then travels at a constant speed for 5 T seconds. It then decelerates to rest uniformly over the next 40 seconds.
a) Sketch a velocity-time graph for this motion
b) Given that the particle travels 600 m , find the value of T

9C First Two SUVAT Equations

1. A cyclist is travelling along a straight road. She accelerates at a constant rate from a speed of $4 \mathrm{~ms}^{-1}$ to a speed of $7.5 \mathrm{~ms}^{-1}$ in 40 seconds. Find:
a) The distance travelled over this 40 seconds
b) The acceleration over the 40 seconds
2. A particle moves in a straight line from a point A to B with constant deceleration of $1.5 \mathrm{~ms}^{-2}$. The speed of the particle at A is $8 \mathrm{~ms}^{-1}$ and the speed of the particle at B is $2 \mathrm{~ms}^{-1}$. Find:
a) The time taken for the particle to get from A to B
b) The distance from A to B

After reaching B the particle continues to move along the straight line with the same deceleration. The particle is at point $C, 6$ seconds after passing through A. Find:
c) The velocity of the particle at C
d) The distance from A to C

9D Final Three SUVAT Equations

1. A particle is moving in a straight line from A to B with constant acceleration $5 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $3 \mathrm{~ms}^{-1}$ in the direction $A B$. The velocity at B is $18 \mathrm{~ms}^{-1}$ in the same direction. Find the distance from A to B.
2. A particle is moving in a straight horizontal line with constant deceleration $4 \mathrm{~ms}^{-2}$. At time $t=$ 0 the particle passes through a point O with speed $13 \mathrm{~ms}^{-1}$, travelling to a point A where $\mathrm{OA}=$ 20m. Find:
a) The times when the particle passes through A
b) The total time the particle is beyond A
c) The time taken for the particle to return to 0
3. A particle is travelling along the x-axis with constant deceleration $2.5 \mathrm{~ms}^{-2}$. At time $t=0$, the particle passes through the origin, moving in the positive direction with speed $15 \mathrm{~ms}^{-1}$. Calculate the distance travelled by the particle by the time it returns to the origin.

9E Movement Under Gravity

1. A ball is projected vertically upwards from a point O with a speed of $12 \mathrm{~ms}^{-1}$. Find:
a) The greatest height reached by the ball
b) The total time the ball is in the air
2. A book falls off the top shelf of a bookcase. The shelf is 1.4 m above the ground. Find:
a) The time it takes the book to reach the floor
b) The speed with which the book strikes the floor
3. A ball is projected upwards from a point X which is 7 m above the ground, with initial speed $21 \mathrm{~ms}^{-1}$. Find the time of flight of the ball.
4. A particle is projected vertically upwards from a point O with initial speed $u \mathrm{~ms}^{-1}$. The greatest height reached by the particle is 62.5 m above the ground. Find:
a) The speed of projection
b) The total time for which the ball is 50 m or more above the ground
5. A ball, A, falls vertically from rest from the top of a tower 63 m high. At the same time as A begins to fall, another ball, B, is projected vertically upwards from the bottom of the tower with velocity $21 \mathrm{~ms}^{-1}$. The balls collide. Find the height at which this happens.
