Chapter 3 - Statistics

Representations of data

Chapter Overview

1. Box plots and outliers

2. Cumulative frequency diagrams

3. Histograms

$\mathbf{2}$	2.1	Interpret diagrams for single-variable data, including understanding that area in a histogram Data presentation and interpretation	Students should be familiar with histograms, frequency polygons, box and whisker plots (including outliers) and cumulative frequency diagrams.
	Connect to probability distributions.		

Topics	What students need to learn:		
	Content		Guidance
2 Data presentation and interpretation continued	2.4	Recognise and interpret possible outliers in data sets and statistical diagrams. Select or critique data presentation techniques in the context of a statistical problem. Be able to clean data, including dealing with missing data, errors and outliers.	Any rule needed to identify outliers will be specified in the question. For example, use of $Q_{1}-1.5 \times I Q R$ and $Q_{3}+1.5 \times I Q R$ or mean $\pm 3 \times$ standard deviation. Students will be expected to draw simple inferences and give interpretations to measures of central tendency and variation. Significance tests, other than those mentioned in Section 5, will not be expected. For example, students may be asked to identify possible outliers on a box plot or scatter diagram.

Box Plots

Box Plots allow us to visually represent the distribution of the data.

How is the IQR represented in this diagram?

How is the range represented in this diagram?

Outliers

An outlier is an extreme value.

One common definition of an outlier is when we're 1.5 IQRs beyond the lower and upper quartiles.

Examples

1. The diameters of 11 different Roman coins are measured in centimetres:
$\begin{array}{llllllllll}2.2 & 2.5 & 2.7 & 2.7 & 2.8 & 3.0 & 3.1 & 3.1 & 3.2 & 4.0\end{array}$
4.7

Determine the quartiles and hence any outliers.
2. [Textbook] The lengths, in cm , of 12 giant African land snails are given below:
$\begin{array}{llllllllll}17 & 18 & 18 & 19 & 20 & 20 & 20 & 20 & 21 & 23 \\ 24 & 32\end{array}$
Calculate the mean and standard deviation, given that $\Sigma x=252$ and $\Sigma x^{2}=5468$. An outlier is an observation which lies ± 2 standard deviations from the mean. Identify any outliers for this data.

Test Your Understanding

The ages of 15 Lib Dem MPs are given: $\begin{array}{lllllllllllllll}11 & 18 & 20 & 27 & 30 & 31 & 32 & 32 & 35 & 36 & 37 & 58 & 63 & 78 & 104.5\end{array}$
a) If an outlier is considered to be 1.5 interquartile ranges below the lower quartile or above the upper quartile, determine any outliers.
b) If instead an outlier is considered to be outside 2 standard deviations within the mean, determine any outliers. Note that $\Sigma x=612$ and $\Sigma x^{2}=33606$

Box Plot Example

Smallest values	Largest values	Lower Quartile	Median	Upper Quartile
0,3	21,27	8	10	14

Draw a box plot to represent the above data.

Test Your Understanding

[Jan 2011 Q3] Over a long period of time a small company recorded the amount it received in sales per month. The results are summarised below.

	Amount received in sales (£1000s)
Two lowest values	3,4
Lower quartile	7
Median	12
Upper quartile	14
Two highest values	20,25

An outlier is an observation that falls
either $1.5 \times$ interquartile range above the upper quartile or $1.5 \times$ interquartile range below the lower quartile.
(a) On the graph paper below, draw a box plot to represent these data, indicating clearly any outliers.
(c) The company claims that for 75% of the months, the amount received per month is greater than $£ 10000$. Comment on this claim, giving a reason for your answer.

Comparing Box Plots

It is important to be able to compare the data that is shown in 2 or more box plots. You should consider the median and quartiles as well as the spread of the data. Always relate the comparison back to the specific situation being analysed.

Examples

1. Box Plot comparing house prices of Croydon and Kingston-upon-Thames:

"Compare the prices of houses in Croydon with those in Kingston". (2 marks)
2.

Consider these box plots comparing marks in a maths competition for boys and girls.

Who had the greater median?

```
boys
girls
```


3.

A coach for a rugby club needs to choose between two different wingers for the next game.

The box plots show the number of tries scored by each winger over the last 10 matches.

Which winger should the coach pick?

Cumulative Frequency Diagrams

We use cumulative frequency diagrams to consider the running totals of / people/ things up to a given value. They are useful for estimating the median and quartiles.

Example: The table below shows the time taken for a group of runners to run 50m. Draw a Cumulative Frequency curve for the data. Use your graph to estimate the median, LQ, UQ and IQR.

Time (s)	Frequency	C. Freq	Median $=$ $9.6<t \leq 9.7$
$9.7<t \leq 9.9$	4	1	LQ $=$
$9.9<t \leq 10.05$	10	5	UQ $=$
$10.05<t \leq 10.2$	17	32	

Estimate how many runners had a time less than 10.15s.

Estimate how many runners had a time more than 9.95

Estimate how many runners had a time between 9.8 s and 10 s

Histograms

You should remember from GCSE that there are some important differences between bar charts and histograms. We will consider 4 important skills.

Bar Charts

- For data.
- Frequency given by of bars.

Histograms

- For data.
- Data divided into (potentially
$\begin{aligned} & \text { uneven) intervals. } \\ & \text { [GCSE definition] Frequency } \\ & \text { given by of bars.* } \\ & \text { No gaps between bars. }\end{aligned}$
$\begin{aligned} & \text { Use this as a reason } \\ & \text { whenever you're asked to } \\ & \text { justify use of a histogram. }\end{aligned}$
* Not necessarily true. We'll correct this in a sec.

Example

1. Calculate the missing values in the table below

Weight (w kg)	Frequency	Frequency Density
$0<w \leq 10$	40	
$10<w \leq 15$	6	
$15<w \leq 35$		2.6
$35<w \leq 45$		1

2. Calculate the frequencies

1. Let's consider the area of the bars:

Example

There were 60 runners in a 100 m race. The following histogram represents their times. Determine the number of runners with times above 14s.

Test Your Understanding

A policeman records the speed of the traffic on a busy road with a 30 mph speed limit. He records the speeds of a sample of 450 cars. The histogram in Figure 2 represents the results.

(a) Calculate the number of cars that were exceeding the speed limit by at least 5 mph in the sample. (4 marks)
(b) Estimate the value of the mean speed of the cars in the sample. (3 marks)
(c) Estimate, to 1 decimal place, the value of the median speed of the cars in the sample.(2)

2. Let's Consider the gaps between the classes:

Example

3. Let's consider the width and height on the diagram

An exam favourite is to ask what width and height we'd draw a bar in a drawn histogram.
Example:
The frequency table shows some running times. On a histogram the bar for $0-4$ seconds is drawn with width 6 cm and height 8 cm . Find the width and height of the bar for 4-6 seconds.

Time (seconds)	Frequency
$0 \leq t<4$	8
$4 \leq t<6$	9

Tip:

0-4 class
Class width =
Drawn width $=$
Scaling $=$
Frequency Density (height) =
Drawn height =
Scaling $=$

4-6 class:

Test Your Understanding

[May 2009 Q3] The variable x was measured to the nearest whole number. Forty observations are given in the table below.

x	$10-15$	$16-18$	$19-$
Frequency	15	9	16

A histogram was drawn and the bar representing the $10-15$ class has a width of 2 cm and a height of 5 cm . For the $16-18$ class find
(a) the width,
(1)
(b) the height
(2)
of the bar representing this class.

4. Forming a frequency polygon

Recall that a frequency polygon can be drawn by using the midpoint of each interval. This corresponds to the midpoint of the top of each bar in a histogram.

Exercise 3D Pg 50
Supplementary questions on printed sheet
Exercise 3E Pg 53

Sources
Maps:
Compass
ynoorınussudu
uosioad
(әכセ.גұ) 17
mus0'0 > \|eju!̣eג

e/u
(besedoljay) edy
Visibility

$$
\begin{array}{l}\text { Dm (decametres) } \\ 1 \mathrm{Dm}=10 \mathrm{~m}\end{array}
$$

Pressure
8-0 !(s+y
Cloud Cover
and cardinal direction
Daily Maximum Gust Direction Daily Mean Wind Direction; knots $(1 \mathrm{kn}=1.15 \mathrm{mph})$
and Beaufort scale

Daily Maximum Gust Daily Mean Windspeed;

Daily Maximum Relative Humidity
$\%$; mist and fog if $>95 \%$
Daily Total Sunshine
hours
॥eju!̣ey ןeł0」 K!!ea
?
Daily Maximum Temperature
Variables Recorded

