Chapter 3 - Statistics

Representations of data

Chapter Overview

1. Box plots and outliers

2. Cumulative frequency diagrams

3. Histograms

	What students need to learn:			
Topics	Content		Guidance	
2 Data presentation and interpretation continued	2.4	Recognise and interpret possible outliers in data sets and statistical diagrams. Select or critique data presentation techniques in the context of a statistical problem.	Any rule needed to identify outliers will be specified in the question. For example, use of $Q_1 - 1.5 \times IQR$ and $Q_3 + 1.5 \times IQR$ or mean $\pm 3 \times$ standard deviation. Students will be expected to draw simple inferences and give interpretations to measures of central tendency and variation. Significance tests, other than those mentioned in Section 5, will not be expected.	
		Be able to clean data, including dealing with missing data, errors and outliers.	For example, students may be asked to identify possible outliers on a box plot or scatter diagram.	

Box Plots

Box Plots allow us to visually represent the distribution of the data.

How is the IQR represented in this diagram?

How is the range represented in this diagram?

Outliers

An outlier is an extreme value.

One common definition of an outlier is when we're 1.5 IQRs beyond the lower and upper quartiles.

Examples

1. The diameters of 11 different Roman coins are measured in centimetres:

2.2 2.5 2.7 2.7 2.8 3.0 3.1 3.1 3.2 4.0 4.7

Determine the quartiles and hence any outliers.

2. [Textbook] The lengths, in cm, of 12 giant African land snails are given below:

17 18 18 19 20 20 20 20 21 23 24 32

Calculate the mean and standard deviation, given that $\Sigma x = 252$ and $\Sigma x^2 = 5468$. An outlier is an observation which lies ± 2 standard deviations from the mean. Identify any outliers for this data.

The ages of 15 Lib Dem MPs are given:

- 11 18 20 27 30 31 32 32 35 36 37 58 63 78 104.5 a) If an outlier is considered to be 1.5 interquartile ranges below the lower
 - quartile or above the upper quartile, determine any outliers.
- b) If instead an outlier is considered to be outside 2 standard deviations within the mean, determine any outliers. Note that $\Sigma x = 612$ and $\Sigma x^2 = 33606$

Box Plot Example

Smallest values	Largest values	Lower Quartile	Median	Upper Quartile
0, 3	21, 27	8	10	14

Draw a box plot to represent the above data.

[Jan 2011 Q3] Over a long period of time a small company

recorded the amount it received in sales per month. The results are summarised below.

	Amount received in sales (£1000s)
Two lowest values	3, 4
Lower quartile	7
Median	12
Upper quartile	14
Two highest values	20, 25

An outlier is an observation that falls

either 1.5 × interquartile range above the upper quartile

- or $1.5 \times$ interquartile range below the lower quartile.
- (a) On the graph paper below, draw a box plot to represent these data, indicating clearly any outliers.(5)

(c) The company claims that for 75% of the months, the amount received per month is greater than £10 000. Comment on this claim, giving a reason for your answer. (2)

Comparing Box Plots

It is important to be able to compare the data that is shown in 2 or more box plots. You should consider the median and quartiles as well as the spread of the data. Always relate the comparison back to the specific situation being analysed.

Examples

1. Box Plot comparing house prices of Croydon and Kingston-upon-Thames:

2.

Consider these box plots comparing marks in a maths competition for boys and girls.

Who had the greater median?

3.

Ex 3A/3B Pg 42-43, 45

Cumulative Frequency Diagrams

We use cumulative frequency diagrams to consider the running totals of / people/ things up to a given value. They are useful for estimating the median and quartiles.

Example: The table below shows the time taken for a group of runners to run 50m. Draw a Cumulative Frequency curve for the data. Use your graph to estimate the median, LQ, UQ and IQR.

Estimate how many runners had a time less than 10.15s.

Time (s)

Estimate how many runners had a time more than 9.95

Estimate how many runners had a time between 9.8s and 10s

Ex 3C Pg 47/48

Histograms

You should remember from GCSE that there are some important differences between bar charts and histograms. We will consider 4 important skills.

* Not necessarily true. We'll correct this in a sec.

Example

1. Calculate the missing values in the table below

Weight (w kg)	Frequency	Frequency Density
0 < w ≤ 10	40	
10 < w ≤ 15	6	
15 < w ≤ 35		2.6
35 < w ≤ 45		1

2. Calculate the frequencies

1. Let's consider the area of the bars:

Example

A policeman records the speed of the traffic on a busy road with a 30 mph speed limit. He records the speeds of a sample of 450 cars. The histogram in Figure 2 represents the results.

(a) Calculate the number of cars that were exceeding the speed limit by at least 5 mph in the sample. (4 marks)

(b) Estimate the value of the mean speed of the cars in the sample. (3 marks)

(c) Estimate, to 1 decimal place, the value of the median speed of the cars in the sample.(2)

2. Let's Consider the gaps between the classes:

Example

3. Let's consider the width and height on the diagram

An exam favourite is to ask what width and height we'd draw a bar in a drawn histogram.

Example:

The frequency table shows some running times. On a histogram the bar for 0-4 seconds is drawn with width 6cm and height 8cm. Find the width and height of the bar for 4-6 seconds.

Time (seconds)	Frequency
$0 \le t < 4$	8
$4 \le t < 6$	9

Tip:

0 -4 class

Class width =	Drawn width =	Scaling =
Frequency Density (height) =	Drawn height =	Scaling =

<u>4-6 class:</u>

[May 2009 Q3] The variable *x* was measured to the nearest whole number. Forty observations are given in the table below.

x	10 - 15	16 - 18	19 —
Frequency	15	9	16

A histogram was drawn and the bar representing the 10 - 15 class has a width of 2 cm and a height of 5 cm. For the 16 - 18 class find

(a) the width,	(1)
(b) the height	(2)
of the bar representing this class.	

4. Forming a frequency polygon

Recall that a frequency polygon can be drawn by using the midpoint of each interval. This corresponds to the midpoint of the top of each bar in a histogram.

Exercise 3D Pg 50

Supplementary questions on printed sheet

Exercise 3E Pg 53

The Large Data Set

Locations

5 UK weather stations

Time Periods

May – October 1987 (6 months) May – October 2015 (6 months)

Seasons

May/June are the end of spring July-Sept is summer October is autumn

Perth (Australia) is in the southern hemisphere, so July-Sept is winter

UK Great Storm

The night of 15-16th October 1987 Gusts up to 100 knots recorded

Florida hurricanes

12 October 1987 Hurricane Floyd 1-2 October 2015 Hurricane Joaquin

Variables Recorded

Daily Maximum Temperature °C

Daily Total Rainfall mm

Daily Total Sunshine hours

Daily Maximum Relative Humidity %; mist and fog if > 95%

Daily Mean Windspeed; Daily Maximum Gust knots (1kn = 1.15mph) and Beaufort scale

Daily Mean Wind Direction; Daily Maximum Gust Direction bearing (°)

and cardinal direction

Cloud Cover oktas (eights); 0 – 8

Visibility

Dm (decametres) 1 Dm =10m

Pressure hPa (hectoPascal)

n/a reading not available

tr (trace) rainfall < 0.05mm

Beaufort Scale

Discrete, scale of 13 values: 0 (calm, < 1kn) 12 (hurricane, 64kn+)

Cardinal Directions

Oktas

Eighths of the sky covered by cloud Discrete, scale of 9 values: 0 (clear sky) 8 (completely overcast)

Sources Maps: Compass:

Pearson mathsmutt.co.uk