9F Part 2 Perpendicular Distances with Lines \& Planes

The perpendicular distance of (α, β, γ) from $n_{1} x+n_{2} y+n_{3} z+d=0$ is $\frac{\left|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}$.

1. Find the perpendicular distance from the point with coordinates $(3,2,-1)$ to the plane with equation $2 x-3 y+z=5$
2. The plane Π has equation:

$$
\boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k})=5
$$

The point P has coordinates:

$$
(1,3,-2)
$$

a) Find the shortest distance between P and Π
b) The point Q is a reflection of P in Π. Find the coordinates of Q.
3. The line l_{1} has equation:

$$
\frac{x-2}{2}=\frac{y-4}{-2}=\frac{z+6}{1}
$$

The plane Π has equation:

$$
2 x-3 y+z=8
$$

The line l_{2} is a reflection of l_{1} in the plane Π. Find a vector equation of the line l_{2}.

