<u>9F Part 2 Perpendicular Distances with Lines & Planes</u>

The perpendicular distance of (α, β, γ) from $n_1 x + n_2 y + n_3 z + d = 0$ is $\frac{\left|n_1 \alpha + n_2 \beta + n_3 \gamma + d\right|}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$.

1. Find the perpendicular distance from the point with coordinates (3,2,-1) to the plane with equation 2x - 3y + z = 5

2. The plane Π has equation:

$$r_{i}(i+2j+2k) = 5$$

The point *P* has coordinates:

$$(1,3,-2)$$

a) Find the shortest distance between P and Π

b) The point Q is a reflection of P in Π . Find the coordinates of Q.

3. The line l_1 has equation:

$$\frac{x-2}{2} = \frac{y-4}{-2} = \frac{z+6}{1}$$

The plane Π has equation:

$$2x - 3y + z = 8$$

The line l_2 is a reflection of l_1 in the plane Π . Find a vector equation of the line l_2 .