9F Part 1 Perpendicular Distances with Lines

1. Show that the shortest distance between the parallel lines with equations:

$$
r=i+2 j-k+\lambda(5 i+4 j+3 k)
$$

and

$$
r=2 i+k+\mu(5 i+4 j+3 k)
$$

is $\frac{21 \sqrt{2}}{10}$
2. The lines l_{1} and l_{2} have equations:

$$
\boldsymbol{r}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \boldsymbol{r}=\left(\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

Find the shortest distance between these two lines.
3. The line l has equation:

$$
\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z+3}{-1}
$$

The point A has coordinates $(1,2,-1)$
a) Find the shortest distance between A and l.
b) Find a Cartesian equation of the line that is perpendicular to l, and passes through A.

