9E Points of Intersection

1. The lines l_{1} and l_{2} have vector equations:

$$
\boldsymbol{r}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)
$$

and

$$
\boldsymbol{r}=\left(\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-5 \\
1 \\
4
\end{array}\right)
$$

Show that the lines intersect, and find their point of intersection.
2. Find the coordinates of the point of intersection of the line l and the plane Π where l has equation:

$$
r=-\boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k})
$$

And Π has equation:

$$
\boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})=4
$$

3. The lines l_{1} and l_{2} have equations:

$$
\frac{x-2}{4}=\frac{y+3}{2}=z-1
$$

and

$$
\frac{x+1}{5}=\frac{y}{4}=\frac{z-4}{-2}
$$

respectively.
Prove that l_{1} and l_{2} are skew.

