Points of Intersection

Example

The lines l_{1} and l_{2} have vector equations $r=3 i+j+k+\lambda(i-2 j-k)$ and $r=-2 j+$ $3 k+\mu(-5 i+j+4 k)$ respectively. Show that the two lines intersect, and find the position vector of the point of intersection.

We can represent any point on l_{1} as the position vector $\left(\begin{array}{c}3+\lambda \\ 1-2 \lambda \\ 1-\lambda\end{array}\right)$ and any point line l_{2} as $\left(\begin{array}{c}-5 \mu \\ -2+\mu \\ 3+4 \mu\end{array}\right)$. If the lines intersect, there must be a choice of λ and μ that makes those two points equal,

$$
\text { i.e. }\left(\begin{array}{c}
3+\lambda \\
1-2 \lambda \\
1-\lambda
\end{array}\right)=\left(\begin{array}{c}
-5 \mu \\
-2+\mu \\
3+4 \mu
\end{array}\right)
$$

Test Your Understanding

[June 2007 Q5] 5. The line l_{1} has equation $\mathbf{r}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
The line l_{2} has equation $\mathbf{r}=\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)+\mu\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$.
(a) Show that l_{1} and l_{2} do not meet.
(4)

The Intersection of a Line and a Plane

Find the point of intersection of the line l and the plane Π where:

$$
l: \boldsymbol{r}=-\boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}) \Pi: \boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})=4
$$

The Intersection in Cartesian Form

The lines l_{1} and l_{2} have equations $\frac{x-2}{4}=\frac{y+3}{2}=z-1$ and $\frac{x+1}{5}=\frac{y}{4}=\frac{z-4}{-2}$ respectively. Prove that l_{1} and l_{2} are skew.

