9D Acute Angles Between Lines \& Planes

1. The lines l_{1} and l_{2} have vector equations:

$$
\boldsymbol{r}=(2 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k})+t(3 \boldsymbol{i}-8 \boldsymbol{j}-\boldsymbol{k})
$$

and

$$
\boldsymbol{r}=(7 \boldsymbol{i}+4 \boldsymbol{j}+\boldsymbol{k})+s(2 \boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})
$$

Given that l_{1} and l_{2} intersect, find the size of the acute angle between the lines, to 1 decimal place.

```
r.n = k for equation of a plane notes
```

2. The plane Π passes through the point A and is perpendicular to the vector \boldsymbol{n}.

Given that $\overrightarrow{O A}=\left(\begin{array}{c}2 \\ 3 \\ -5\end{array}\right)$ and $\boldsymbol{n}=\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)$, with O being the origin, find an equation of the plane:
a) In scalar product form
b) In Cartesian form
3. Find the acute angle between the line \boldsymbol{l} with equation:

$$
\boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(3 \boldsymbol{i}+4 \boldsymbol{j}-12 \boldsymbol{k})
$$

and the plane with equation:

$$
\boldsymbol{r} .(2 \boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k})=2
$$

4. Find the acute angle between the planes with equations \boldsymbol{r}. $\left(\begin{array}{c}4 \\ 4 \\ -7\end{array}\right)=13$ and r. $\left(\begin{array}{c}7 \\ -4 \\ 4\end{array}\right)=6$.
