9D Acute Angles Between Lines & Planes

1. The lines l_1 and l_2 have vector equations:

$$r = (2i + j + k) + t(3i - 8j - k)$$

and

$$r = (7i + 4j + k) + s(2i + 2j + 3k)$$

Given that l_1 and l_2 intersect, find the size of the acute angle between the lines, to 1 decimal place.

r.n = k for equation of a plane notes

- 2. The plane Π passes through the point A and is perpendicular to the vector \boldsymbol{n} . Given that $\overrightarrow{OA} = \begin{pmatrix} 2\\ 3\\ -5 \end{pmatrix}$ and $\boldsymbol{n} = \begin{pmatrix} 3\\ 1\\ -1 \end{pmatrix}$, with O being the origin, find an equation of the plane:
- a) In scalar product form

b) In Cartesian form

3. Find the acute angle between the line \boldsymbol{l} with equation:

$$\boldsymbol{r} = 2\boldsymbol{i} + \boldsymbol{j} - 5\boldsymbol{k} + \lambda(3\boldsymbol{i} + 4\boldsymbol{j} - 12\boldsymbol{k})$$

and the plane with equation:

$$\boldsymbol{r}_{\cdot}\left(2\boldsymbol{i}-2\boldsymbol{j}-\boldsymbol{k}\right)=2$$

4. Find the acute angle between the planes with equations $r \cdot \begin{pmatrix} 4 \\ 4 \\ -7 \end{pmatrix} = 13$ and $r \cdot \begin{pmatrix} 7 \\ -4 \\ 4 \end{pmatrix} = 6$.