## Scalar Product

The scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ of two vectors is the sum of the products of the components. The result is a scalar, hence the name.

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\sum a_{i} b_{i}
$$

## Examples

1. $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 0 \\ 1\end{array}\right)=$
2. $\left(\begin{array}{c}5 \\ -2 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right)=$
3. $\left(\begin{array}{l}a \\ 5 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}3 \\ b \\ 10\end{array}\right)=$

Remarkably, if the two vectors are unit vectors, the dot product gives us the cosine of the angle between them.

Angle between vectors:

$$
\frac{a}{|a|} \cdot \frac{b}{|\boldsymbol{b}|}=\cos \theta
$$

or

$$
\cos \theta=\frac{a \cdot b}{|a||b|}
$$



Note the direction if the vectors and the corresponding angle.

## Example

Find the acute angle between the vectors $\boldsymbol{a}=\left(\begin{array}{l}5 \\ 3 \\ 1\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{l}1 \\ 0 \\ 5\end{array}\right)$.

## Example

Find the angle between the vectors $\left(\begin{array}{c}2 \\ 4 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 8\end{array}\right)$.

## Example

If $A(2,3,5), \quad B(5,0,4)$ and $C(4,-3,2)$, determine the angle $A B C$.
Hence find the area of triangle $A B C$.

## Perpendicular Vectors

Given that

$$
\cos \theta=\frac{a \cdot b}{|a||b|}
$$

It follows that if two vectors are perpendicular then
We can use this to prove that two vectors are perpendicular.

## Example

1. Show that $\boldsymbol{a}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)$ are perpendicular.
2. Given that $\boldsymbol{a}=-2 \boldsymbol{i}+5 \boldsymbol{j}-4 \boldsymbol{k}$ and $\boldsymbol{b}=4 \boldsymbol{i}-8 \boldsymbol{j}+5 \boldsymbol{k}$, find a vector which is perpendicular to both $\boldsymbol{a}$ and $\boldsymbol{b}$.

## Test Your Understanding

[June 2008 Q6] 6. With respect to a fixed origin $O$, the lines $l_{1}$ and $l_{2}$ are given by the equations

$$
\begin{aligned}
& l_{1}: \mathbf{r}=(-9 \mathbf{i}+10 \mathbf{k})+\lambda(2 \mathbf{i}+\mathbf{j}-\mathbf{k}) \\
& l_{2}: \mathbf{r}=(3 \mathbf{i}+\mathbf{j}+17 \mathbf{k})+\mu(3 \mathbf{i}-\mathbf{j}+5 \mathbf{k})
\end{aligned}
$$

where $\lambda$ and $\mu$ are scalar parameters.
(b) Show that $l_{1}$ and $l_{2}$ are perpendicular to each other.
(2)
[Jan 2012 Q7] 7. Relative to a fixed origin $O$, the point $A$ has position vector $(2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})$, the point $B$ has position vector $(5 \mathbf{i}+2 \mathbf{j}+10 \mathbf{k})$, and the point $D$ has position vector $(-\mathbf{i}+\mathbf{j}+4 \mathbf{k})$.

The line $l$ passes through the points $A$ and $B$.
(a) Find the vector $\overrightarrow{A B}$.
(b) Find a vector equation for the line $l$.
(c) Show that the size of the angle $B A D$ is $109^{\circ}$, to the nearest degree.

The points $A, B$ and $D$, together with a point $C$, are the vertices of the parallelogram $A B C D$, where $\overrightarrow{A B}=\overrightarrow{D C}$.
(d) Find the position vector of $C$.
(e) Find the area of the parallelogram $A B C D$, giving your answer to 3 significant figures. (3)

