9C \& D SUVAT Equations

1. A cyclist is travelling along a straight road. She accelerates at a constant rate from a speed of $4 \mathrm{~ms}^{-1}$ to a speed of $7.5 \mathrm{~ms}^{-1}$ in 40 seconds. Find:
a) The distance travelled over this 40 seconds
b) The acceleration over the 40 seconds
2. A particle moves in a straight line from a point A to B with constant deceleration of $1.5 \mathrm{~ms}^{-2}$. The speed of the particle at A is $8 \mathrm{~ms}^{-1}$ and the speed of the particle at B is $2 \mathrm{~ms}^{-1}$. Find:
a) The time taken for the particle to get from A to B
b) The distance from A to B

After reaching B the particle continues to move along the straight line with the same deceleration. The particle is at point $C, 6$ seconds after passing through A. Find:
c) The velocity of the particle at C
d) The distance from A to C
3. A particle is moving in a straight line from A to B with constant acceleration $5 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $3 \mathrm{~ms}^{-1}$ in the direction $A B$. The velocity at B is $18 \mathrm{~ms}^{-1}$ in the same direction. Find the distance from A to B.
4. A particle is moving in a straight horizontal line with constant deceleration $4 \mathrm{~ms}^{-2}$. At time $t=$ 0 the particle passes through a point O with speed $13 \mathrm{~ms}^{-1}$, travelling to a point A where $\mathrm{OA}=$ 20m. Find:
a) The times when the particle passes through A
b) The total time the particle is beyond A
c) The time taken for the particle to return to 0
5. A particle is travelling along the x-axis with constant deceleration $2.5 \mathrm{~ms}^{-2}$. At time $t=0$, the particle passes through the origin, moving in the positive direction with speed $15 \mathrm{~ms}^{-1}$. Calculate the distance travelled by the particle by the time it returns to the origin.

