Examples

1. Find the Cartesian equation of the line with equation $r = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$.

2. Find the Cartesian equation of the line with equation
$$r = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$
.

3. The Cartesian equation of a line is y = 3x + 2. Find the vector form of the equation of the line.

4. The Cartesian equation of a line is $\frac{x-2}{3} = \frac{y+5}{1} = \frac{z}{4}$. Find the vector form of the equation of the line.

The Equation of a Plane

Example

A plane Π passes through the points A(2,6,-1), B(7,2,-1), C(4,2,5)Find the equation of the plane Π in the form $\boldsymbol{a} + \lambda \boldsymbol{b} + \mu \boldsymbol{c}$ Example

Verify that the point *P* with position vector $\begin{pmatrix} 2\\2\\-1 \end{pmatrix}$ lies in the plane with vector equation $r = \begin{pmatrix} 3\\4\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$

Test Your Understanding

	(1))	(-1)		(2)	
[June 2015 Q5] The points A, B and C have position vectors	3	,	0	and	1	
respectively.	(2))	(1)		(0)	
respectively.						

The plane Π contains the points A, B and C.

(c) Find a vector equation of Π

(4)