Cartesian Form of Equation of a Straight Line

\square

Examples

1. Find the Cartesian equation of the line with equation $r=\left(\begin{array}{c}4 \\ 3 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right)$.
2. Find the Cartesian equation of the line with equation $r=\left(\begin{array}{c}2 \\ 5 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$.
3. The Cartesian equation of a line is $y=3 x+2$. Find the vector form of the equation of the line.
4. The Cartesian equation of a line is $\frac{x-2}{3}=\frac{y+5}{1}=\frac{z}{4}$. Find the vector form of the equation of the line.

The Equation of a Plane

The equation of a plane can be written in vector form.
Let the point R , with position vector \boldsymbol{r} be an arbitrary point on the plane Π.
Suppose Π passes through the point A, with position vector a.
Let \mathbf{b} and \mathbf{c} be non-parallel vectors in the plane.
The position of the general point R can be found by

$$
r=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}
$$

This is one of several ways of writing the equation of a plane.

Example

A plane Π passes through the points $A(2,6,-1), B(7,2,-1), C(4,2,5)$
Find the equation of the plane Π in the form $\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}$

Example

Verify that the point P with position vector $\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$ lies in the plane with vector equation $r=\left(\begin{array}{c}3 \\ 4 \\ -2\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$

Test Your Understanding

[June 2015 Q5] The points A, B and C have position vectors $\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ respectively.

The plane Π contains the points A, B and C.
(c) Find a vector equation of Π

