9A Part 2 Cartesian 3D Lines

1. With respect to the fixed origin O , the line l is given by the equation:

$$
\boldsymbol{r}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\lambda\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Prove that a Cartesian form of the equation of l is:

$$
\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}
$$

2. Find a Cartesian equation of the line with equation:

$$
\boldsymbol{r}=\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right)
$$

3. The line l has equation:

$$
\boldsymbol{r}=\left(\begin{array}{c}
-2 \\
1 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

The point P has position vector:

a) Show that P does not line on l
b) Given that a circle, centre P, intersects l at points A and B, and that A has position vector:

$$
A=\left(\begin{array}{c}
0 \\
-3 \\
6
\end{array}\right)
$$

Find the position vector of B.

