Core Pure 1

Vectors

Chapter Overview

1: Equations of straight lines in 3D
2: Equations of planes
3: Scalar product and angles between line + line or plane + line or plane + plane.

4: Scalar product form of equation of plane
5: Point of intersection of two planes
6: Perpendicular distance between line + line or point + line or point + plane

6 Further vectors	6.1	Understand and use the vector and Cartesian forms of an equation of a straight line in 3-D.	The forms, $r=a+\lambda b$ and $\frac{x-a_{1}}{b_{1}}=\frac{x-a_{2}}{b_{2}}=\frac{x-a_{3}}{b_{3}}$ Find the point of intersection of two straight lines given in vector form. Students should be familiar with the concept of skew lines and parallel lines.
	6.2	Understand and use the vector and Cartesian forms of the equation of a plane.	The forms $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c} \text { and } \mathbf{a} x+\mathbf{b} y+\mathbf{c} z=d$
	6.3	Calculate the scalar product and use it to express the equation of a plane, and to calculate the angle between two lines, the angle between two planes and the angle between a line and a plane.	$a \cdot b=\|a\|\|b\| \cos \theta$ The form r.n $=\boldsymbol{k}$ for a plane.
	6.4	Check whether vectors are perpendicular by using the scalar product.	Knowledge of the property that a.b=0 if the vectors a and b are perpendicular.

6	6.5	Find the intersection of a continued	The perpendicular distance from (α, β, γ) to $n_{1} x+n_{2} y+n_{3} z+d=0$ line and a plane. Calculate the perpendicular distance between two lines, from a point to a line and from a point to a plane.

\square

Important understanding points:

- \boldsymbol{a} and \boldsymbol{b} are constants (i.e. fixed for a given line) while $\boldsymbol{\lambda}$ is a variable.
- It is often helpful to write as a single vector, e.g:

$$
\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \rightarrow\left(\begin{array}{c}
3+\lambda \\
\lambda \\
-2
\end{array}\right)
$$

- It is very important the you can distinguish between the position vector \boldsymbol{r} of a point on the line, and the direction \boldsymbol{b} of the line

Examples

1. The equation of line l_{1} is $r=\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

Find the vector equation of a line parallel to l_{1} which passes through the point $(2,5,1)$.
2. The equation of line l_{1} is $r=\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

Find the coordinates of the points on l_{1} which are a distance of 3 away from (3,4,4).
3. Find a vector equation of the straight line which passes through the point A, with position vector $5 \boldsymbol{i}-3 \boldsymbol{j}+4 \boldsymbol{k}$ and is parallel to the vector $2 \boldsymbol{i}-3 \boldsymbol{k}$.
4. Find a vector equation of the straight line which passes through the points A and B, with coordinates $(4,5,-1)$ and $(6,3,2)$ respectively.
5. The straight line has vector equation $r=(3 i+2 j-5 k)+t(i-6 j-2 k)$. Given that the point $(a, b, 0)$ lines on l, find the value of a and the value of b.
6. The straight line l has vector equation $\boldsymbol{r}=(2 i+5 j-3 k)+\lambda(6 i-2 j+4 k)$. Show that another vector equation of l is

$$
\boldsymbol{r}=(8 i+3 j+k)+\mu(3 i-j+2 k)
$$

Test Your Understanding

Find a vector equation of the straight line which passes through the points A and B, with coordinates $(3,0,2)$ and $(-6,1,0)$ respectively.

Final Example

The line l has equation $r=\left(\begin{array}{c}-2 \\ 1 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$, and the point P has position vector $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$.
(a) Show that P does not lie on l.

Given that a circle, centre P, intersects l at points A and B, and that A has position vector $\left(\begin{array}{c}0 \\ -3 \\ 6\end{array}\right)$,
(b) find the position vector of B.

