9A Part 1 3D Lines Introduction

1. Find the equation of the straight line that passes through the point A, which has position vector $\left(\begin{array}{c}3 \\ -5 \\ 4\end{array}\right)$, and is parallel to the vector $\left(\begin{array}{c}7 \\ 0 \\ -3\end{array}\right)$.
2. Find a vector equation of the straight line that passes through the points A and B, with coordinates $(4,5,-1)$ and $(6,3,2)$ respectively.
3. The straight line l has vector equation:

$$
\boldsymbol{r}=(3 \boldsymbol{i}+2 \boldsymbol{j}-5 \boldsymbol{k})+t(\boldsymbol{i}-6 \boldsymbol{j}-2 \boldsymbol{k})
$$

Given that the point $(a, b, 0)$ lies on l, find the value of a and the value of b.
4. The straight line l has vector equation:

$$
\boldsymbol{r}=(2 \boldsymbol{i}+5 \boldsymbol{j}-3 \boldsymbol{k})+\lambda(6 \boldsymbol{i}-2 \boldsymbol{j}+4 \boldsymbol{k})
$$

Show that another vector equation of l is:

$$
\boldsymbol{r}=(8 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})+\mu(3 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k})
$$

9A Part 2 Cartesian 3D Lines

1. With respect to the fixed origin O , the line l is given by the equation:

$$
\boldsymbol{r}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\lambda\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Prove that a Cartesian form of the equation of l is:

$$
\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}
$$

2. Find a Cartesian equation of the line with equation:

$$
\boldsymbol{r}=\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right)
$$

3. The line l has equation:

$$
\boldsymbol{r}=\left(\begin{array}{c}
-2 \\
1 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

The point P has position vector:

a) Show that P does not line on l
b) Given that a circle, centre P, intersects l at points A and B, and that A has position vector:

$$
A=\left(\begin{array}{c}
0 \\
-3 \\
6
\end{array}\right)
$$

Find the position vector of B.

9B Part 1 3D Planes Introduction

1. Find, in the form $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}$, an equation of the plane that passes through the points $A(2,2,-1), B(3,2,-1)$ and $C(4,3,5)$
2. Verify that the point P with position vector $\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$ lies in the plane with vector equation:

$$
\boldsymbol{r}=\left(\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

9B Part 2 Cartesian 3D Planes

2D notes:

1. The straight line graph has normal vector $\binom{-1}{4}$ and passes through $(2,3)$. Find the equation of the line.

3D notes:
2. The plane Π is perpendicular to the normal vector $\boldsymbol{n}=3 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k}$ and passes through the point P with position vector $8 \boldsymbol{i}+4 \boldsymbol{j}-7 \boldsymbol{k}$. Find a Cartesian equation of Π.

9C Scalar Products \& Angles Between Lines

1. Given that $\boldsymbol{a}=\left(\begin{array}{c}8 \\ -5 \\ -4\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}5 \\ 4 \\ -1\end{array}\right)$.
a) Find $\boldsymbol{a} \cdot \boldsymbol{b}$
b) Find the angle between \boldsymbol{a} and \boldsymbol{b}, giving your answer in degrees to 1 decimal place
2. Given that the vectors $\boldsymbol{a}=2 \boldsymbol{i}-6 \boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{b}=5 \boldsymbol{i}+2 \boldsymbol{j}+\lambda \boldsymbol{k}$ are perpendicular, find the value of λ.
3. Given that $\boldsymbol{a}=-2 \boldsymbol{i}+5 \boldsymbol{j}-4 \boldsymbol{k}$ and $\boldsymbol{b}=4 \boldsymbol{i}-8 \boldsymbol{j}+5 \boldsymbol{k}$, find a vector which is perpendicular to both \boldsymbol{a} and \boldsymbol{b}.
4. The points A, B and C have coordinates $(2,-1,1),(5,1,7)$ and $(6,-3,1)$ respectively.
a) Find $\overrightarrow{A B} \cdot \overrightarrow{A C}$
b) Hence, or otherwise, find the area of triangle $A B C$

9D Acute Angles Between Lines \& Planes

1. The lines l_{1} and l_{2} have vector equations:

$$
\boldsymbol{r}=(2 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k})+t(3 \boldsymbol{i}-8 \boldsymbol{j}-\boldsymbol{k})
$$

and

$$
\boldsymbol{r}=(7 \boldsymbol{i}+4 \boldsymbol{j}+\boldsymbol{k})+s(2 \boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})
$$

Given that l_{1} and l_{2} intersect, find the size of the acute angle between the lines, to 1 decimal place.

```
r.n = k for equation of a plane notes
```

2. The plane Π passes through the point A and is perpendicular to the vector \boldsymbol{n}.

Given that $\overrightarrow{O A}=\left(\begin{array}{c}2 \\ 3 \\ -5\end{array}\right)$ and $\boldsymbol{n}=\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)$, with O being the origin, find an equation of the plane:
a) In scalar product form
b) In Cartesian form
3. Find the acute angle between the line \boldsymbol{l} with equation:

$$
\boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(3 \boldsymbol{i}+4 \boldsymbol{j}-12 \boldsymbol{k})
$$

and the plane with equation:

$$
\boldsymbol{r} .(2 \boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k})=2
$$

4. Find the acute angle between the planes with equations \boldsymbol{r}. $\left(\begin{array}{c}4 \\ 4 \\ -7\end{array}\right)=13$ and r. $\left(\begin{array}{c}7 \\ -4 \\ 4\end{array}\right)=6$.

9E Points of Intersection

1. The lines l_{1} and l_{2} have vector equations:

$$
\boldsymbol{r}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)
$$

and

$$
\boldsymbol{r}=\left(\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-5 \\
1 \\
4
\end{array}\right)
$$

Show that the lines intersect, and find their point of intersection.
2. Find the coordinates of the point of intersection of the line l and the plane Π where l has equation:

$$
r=-\boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k})
$$

And Π has equation:

$$
\boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})=4
$$

3. The lines l_{1} and l_{2} have equations:

$$
\frac{x-2}{4}=\frac{y+3}{2}=z-1
$$

and

$$
\frac{x+1}{5}=\frac{y}{4}=\frac{z-4}{-2}
$$

respectively.
Prove that l_{1} and l_{2} are skew.

9F Part 1 Perpendicular Distances with Lines

1. Show that the shortest distance between the parallel lines with equations:

$$
r=i+2 j-k+\lambda(5 i+4 j+3 k)
$$

and

$$
r=2 i+k+\mu(5 i+4 j+3 k)
$$

is $\frac{21 \sqrt{2}}{10}$
2. The lines l_{1} and l_{2} have equations:

$$
\boldsymbol{r}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \boldsymbol{r}=\left(\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

Find the shortest distance between these two lines.
3. The line l has equation:

$$
\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z+3}{-1}
$$

The point A has coordinates $(1,2,-1)$
a) Find the shortest distance between A and l.
b) Find a Cartesian equation of the line that is perpendicular to l, and passes through A.

9F Part 2 Perpendicular Distances with Lines \& Planes

The perpendicular distance of (α, β, γ) from $n_{1} x+n_{2} y+n_{3} z+d=0$ is $\frac{\left|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}$.

1. Find the perpendicular distance from the point with coordinates $(3,2,-1)$ to the plane with equation $2 x-3 y+z=5$
2. The plane Π has equation:

$$
\boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k})=5
$$

The point P has coordinates:

$$
(1,3,-2)
$$

a) Find the shortest distance between P and Π
b) The point Q is a reflection of P in Π. Find the coordinates of Q.
3. The line l_{1} has equation:

$$
\frac{x-2}{2}=\frac{y-4}{-2}=\frac{z+6}{1}
$$

The plane Π has equation:

$$
2 x-3 y+z=8
$$

The line l_{2} is a reflection of l_{1} in the plane Π. Find a vector equation of the line l_{2}.

