## Modelling

## [June 2013 (Withdrawn) Q8]

(a) Express  $9\cos\theta - 2\sin\theta$  in the form  $R\cos(\theta + \alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$ 

Give the exact value of R and give the value of  $\alpha$  to 4 decimal places. (3)

- (b) (i) State the maximum value of  $9\cos\theta 2\sin\theta$ 
  - (ii) Find the value of  $\theta$ , for  $0 < \theta < 2\pi$ , at which this maximum occurs.

Ruth models the height *H* above the ground of a passenger on a Ferris wheel by the equation

$$H = 10 - 9\cos\left(\frac{\pi t}{5}\right) + 2\sin\left(\frac{\pi t}{5}\right)$$

where H is measured in metres and t is the time in minutes after the wheel starts turning.



(3)

**(2)** 

- (c) Calculate the maximum value of H predicted by this model, and the value of t, when this maximum first occurs. Give your answers to 2 decimal places. (4)
- (d) Determine the time for the Ferris wheel to complete two revolutions.

When trigonometric equations are in the form  $Rsin(ax \pm b)$  or  $Rcos(ax \pm b)$ , they can be used to model various things which have an oscillating behaviour, e.g. tides, the swing of a pendulum and sound waves.

## Test Your Understanding

[June 2010 Q7] 2. (a) Express  $2 \sin \theta - 1.5 \cos \theta$  in the form  $R \sin (\theta - \alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$ .

Give the value of  $\alpha$  to 4 decimal places.

(3)

(3)

- (b) (i) Find the maximum value of  $2 \sin \theta 1.5 \cos \theta$ .
  - (ii) Find the value of  $\theta$ , for  $0 \le \theta < \pi$ , at which this maximum occurs.

\_\_\_

Tom models the height of sea water, H metres, on a particular day by the equation

$$H = 6 + 2 \sin\left(\frac{4\pi t}{25}\right) - 1.5 \cos\left(\frac{4\pi t}{25}\right), \quad 0 \le t < 12,$$

where t hours is the number of hours after midday.

- (c) Calculate the maximum value of H predicted by this model and the value of t, to 2 decimal places, when this maximum occurs.
  (3)
- (d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres. (6)

Tip: Reflect carefully on the substitution you use to allow (bii) to match your identity in (a).  $\theta = ?$