Proving Trigonometric Identities

Just like Chapter 6 had 'provey' and 'solvey' questions, we also get the 'provey' questions in Chapter 7. Just use the appropriate double angle or addition formula.

Prove that
$$\tan 2\theta \equiv \frac{2}{\cot \theta - \tan \theta}$$

Prove that
$$\frac{1-\cos 2\theta}{\sin 2\theta} \equiv \tan \theta$$

Test Your Understanding

[OCR] Prove that $\cot 2x + \csc 2x \equiv \cot x$

[OCR] By writing $\cos x = \cos\left(2 \times \frac{x}{2}\right)$ or otherwise, prove the identity $\frac{1-\cos x}{1+\cos x} \equiv \tan^2\left(\frac{x}{2}\right)$

Very Challenging Exam Example

Edexcel C3 June 2015 Q8

(a) Prove that

$$\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A - \sin A}, \qquad A \neq \frac{(2n+1)\pi}{4}, \ n \in \mathbb{Z}$$

(5)

(b) Hence solve, for $0 \le \theta < 2\pi$,

$$\sec 2\theta + \tan 2\theta = \frac{1}{2}$$

Give your answers to 3 decimal places.

(4)