## $a \sin \theta + b \cos \theta$

| Q | Put $3 \sin x + 4 \cos x$ in the form $R \sin(x + \alpha)$ giving $\alpha$ in degrees to 1dp. |  |  |
|---|-----------------------------------------------------------------------------------------------|--|--|
|   | STEP 1: Expanding:                                                                            |  |  |
|   | STEP 2: Comparing coefficients:                                                               |  |  |
|   | STEP 3: Using the fact that $R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = R^2$ :                   |  |  |
|   | <b>STEP 4</b> : Using the fact that $\frac{R \sin \alpha}{R \cos \alpha} = \tan \alpha$ :     |  |  |
|   | STEP 5: Put values back into original expression.                                             |  |  |

## **Test Your Understanding**

Q Put  $\sin x + \cos x$  in the form  $R \sin(x + \alpha)$  giving  $\alpha$  in terms of  $\pi$ .

Q Put  $\sin x - \sqrt{3}\cos x$  in the form  $R\sin(x-\alpha)$  giving  $\alpha$  in terms of  $\pi$ .

**Tip**: This is an exam favourite!

(Without using calculus), find the maximum value of  $12\cos\theta+5\sin\theta$ , and give the smallest positive value of  $\theta$  at which it arises.

| Expression                      | Maximum | (Smallest) $	heta$ at max |
|---------------------------------|---------|---------------------------|
| $20 \sin \theta$                |         |                           |
| $5-10\sin\theta$                |         |                           |
| $3\cos(\theta + 20^\circ)$      |         |                           |
| $\frac{2}{10+3\sin(\theta-30)}$ |         |                           |

## **Further Test Your Understanding**

## Edexcel C3 Jan 2013 Q4

**4.** (a) Express 6 cos  $\theta$  + 8 sin  $\theta$  in the form R cos  $(\theta - \alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$ . Give the value of  $\alpha$  to 3 decimal places.

(4)

$$p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, \quad 0 \le \theta \le 2\pi.$$

Calculate

- (i) the maximum value of  $p(\theta)$ ,
- (ii) the value of  $\theta$  at which the maximum occurs.

**(4)**