7A Additional Formulae Identities

Trigonometric identities

```
\(\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B\)
\(\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B\)
\(\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right)\)
```

1. Use $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ to show that:

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

2. Use $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$ and $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ To show that

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
$$

3. Prove that

$$
\frac{\cos A}{\sin B}-\frac{\sin A}{\cos B} \equiv \frac{\cos (A+B)}{\sin B \cos B}
$$

4. Given that:
$2 \sin (x+y)=3 \cos (x-y)$
Express tanx in terms of tany

7B Applying the Addition Formulae

1. Given that:

$$
\begin{aligned}
& \operatorname{Sin} \mathrm{A}=-\frac{3}{5} \quad 180^{\circ}<\mathrm{A}<270^{\circ} \\
& \operatorname{Cos} \mathrm{B}=-\frac{12}{13} \quad \mathrm{~B}=\text { Obtuse }
\end{aligned}
$$

Find the value of:
$\operatorname{Tan}(A+B)$

7C Double Angles Formulae

$\operatorname{Sin} 2 A \equiv 2 \operatorname{Sin} A \operatorname{Cos} A$

Key points:
If you see sin and cos multiplied together and both have the same angle -> this can be reduced using sin double angle formulae to a single trig function

Examples:
a) $\sin x \cos x=$
b) $6 \cos x \sin x=$
c) $5 \sin 3 x \cos 3 x=$

$$
\operatorname{Cos} 2 A \equiv \operatorname{Cos}^{2} A-\operatorname{Sin}^{2} A
$$

Key points:
If you see $\operatorname{Sin}^{2} A$ or $\operatorname{Cos}^{2} A$ this can be reduced using the \cos double angle formulae to a single trig function

Examples:
a) $\operatorname{Sin}^{2} x=$
b) $4 \operatorname{Cos}^{2} x=$
c) $3 \operatorname{Sin}^{2} 4 x=$

$$
\operatorname{Tan} 2 A \equiv \frac{2 \operatorname{Tan}^{2}}{1-\operatorname{Tan}^{2} A}
$$

1. Use the double angle formulae to write the following expression as a single trigonometric ratio:
a) $\operatorname{Cos}^{2} 50-\operatorname{Sin}^{2} 50$
b) $\frac{2 \tan \frac{\pi}{6}}{1-\tan ^{2} \frac{\pi}{6}}$
C) $\frac{4 \sin 70}{\sec 70}$
2. Given that $x=3 \sin \theta$ and $y=3-4 \cos 2 \theta$, eliminate θ and express y in terms of x.
3. Given that:

$$
\cos x=\frac{3}{4}, \quad 180^{\circ}<x<360^{\circ}
$$

Find the exact value of:
a) $\sin 2 x$
b) $\tan 2 x$

7F Trig Identities with Double Angles formulae

1. Show that:

$$
2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \theta \equiv \frac{1}{2} \sin 2 \theta
$$

2. Show that:

$$
1+\cos 4 \theta \equiv 2 \cos ^{2} 2 \theta
$$

3. Prove the Identity:

$$
\tan 2 \theta \equiv \frac{2}{\cot \theta-\tan \theta}
$$

4. Prove the Identity:

$$
\sqrt{3} \cos 4 \theta+\sin 4 \theta \equiv 2 \cos \left(4 \theta-\frac{\pi}{6}\right)
$$

7D Solving Equations

1. Solve $4 \cos (\theta-30)=8 \sqrt{2} \sin \theta$ in the range $0 \leq \theta \leq 360$. Give answers to 1 dp .
2. Solve $3 \cos 2 x-\cos x+2=0$ in the range $0 \leq x \leq 360$. Give answers to 1 dp where appropriate.
3. Solve 2 tan 2 ytany $=3$ in the range $0 \leq y \leq 2 \pi$. Give answers to 2 dp .
4.

a) By expanding $\sin (2 A+A)$, show that:

$$
\sin 3 A \equiv 3 \sin A-4 \sin ^{3} A
$$

b) Hence, or otherwise, solve:
$16 \sin ^{3} \theta-12 \sin \theta-2 \sqrt{3}=0$, in the range $0<\theta<2 \pi$

$\underline{7 E R \operatorname{Cos}(x+\alpha) \& R \operatorname{Sin}(x+\alpha)}$

1. Show that:

$$
3 \sin x+4 \cos x
$$

Can be expressed in the form:

$$
\begin{gathered}
R \sin (x+\alpha) \\
R>0 \\
0^{\circ}<\alpha<90^{\circ}
\end{gathered}
$$

2. Show that you can express:

$$
\sin x-\sqrt{3} \cos x
$$

In the form:

$$
\begin{gathered}
R \sin (x-\alpha) \\
R>0 \\
0<\alpha<\frac{\pi}{2}
\end{gathered}
$$

Quick Shortcuts and patterns:

Key point: This skill helps us reduce two trigonometric functions with the same angle that are being summed together to one single trigonometric function.

Where could this skill be useful?
3.
a) Express:

$$
2 \cos \theta+5 \sin \theta
$$

in the form:

$$
\begin{gathered}
R \cos (x-\alpha) \\
R>0 \\
0^{\circ}<\alpha<90^{\circ}
\end{gathered}
$$

b) Hence, solve $2 \cos \theta+5 \sin \theta=3,0^{\circ}<\theta<360^{\circ}$

7G Modelling with Trigonometry

Expression	Maximum	(Smallest) $\boldsymbol{\theta}$ at max
$20 \sin \theta$		
$5-10 \sin \theta$		
$3 \cos \left(\theta+20^{\circ}\right)$		
2		
$10+3 \sin (\theta-30)$		

1.
2. The cabin pressure, P, in pounds per square inch (psi) on an aeroplane at cruising altitude can be modelled by the equation:
$P=11.5-0.5 \sin (t-2)$
*note these formulae are often a result of reducing to $R \cos (x+a)$ form
Where t is the time in hours since the cruising altitude was first reached, and all angles are measured in radians
a) State the minimum and maximum cabin pressure
b) Find the time after reaching cruising altitude that the cabin first reaches a maximum pressure
c) Calculate the cabin pressure after 5 hours at a cruising altitude
d) Find all the times during the first 8 hours of cruising that the cabin pressure would be exactly 11.3 psi.
