Inverse Trig Functions

$$If \ sinx = \frac{1}{2} \ then \ x = \sin^{-1}\left(\frac{1}{2}\right)$$

 We also call this $\arcsin(\frac{1}{2})$ so we say $x = \arcsin(\frac{1}{2})$

The inverse trig functions are known as

$$y = \arcsin x$$
, $y = \arccos x$, $y = \arctan x$

They are inverse functions, hence

- · They only exist for a one to one function
- · They map from the range of the original function back to its original domain
- The graphs are reflections of the original in the line y = x.

Inverse Trig Functions

You need to know how to sketch $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$. (Yes, you could be asked in an exam!)

Inverse Trig Functions

$$y = \arccos x$$

$$y = \arctan x$$

Evaluating inverse trig functions

[Textbook] Work out, in radians, the values of:

- a) $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$
- b) $arccos(-1)^2$
- c) $\arctan(\sqrt{3})$

You can simply use the $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$ buttons on your calculator.

If you don't have a calculator, just use the sin, cos, tan graphs backwards.

One Final Problem...

Edexcel C3 Jan 2007

8. (ii) Given that

 $y = \arccos x$, $-1 \le x \le 1$ and $0 \le y \le \pi$,

(a) express $\arcsin x$ in terms of y.

(2)

(b) Hence evaluate $\arccos x + \arcsin x$. Give your answer in terms of π .

(1)