$$\sin^2 x + \cos^2 x = 1$$

There are just two new identities you need to know:

Dividing by $\cos^2 x$:

Dividing by $\sin^2 x$:

"Prove that $1 + \tan^2 x \equiv \sec^2 x$."

 $\sin^2 x + \cos^2 x \equiv 1$ $\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} \equiv \frac{1}{\cos^2 x}$ $\tan^2 x + 1 \equiv \sec^2 x$

Examples

[Textbook] Prove that $\csc^4 \theta - \cot^4 \theta = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$

Solve the equation $4 \csc^2 \theta - 9 = \cot \theta$ in the interval $0 \le \theta \le 360^\circ$

This is just like in AS; if you had say a mixture of $\sin \theta$, $\sin^2 \theta$, $\cos^2 \theta$: you'd change the $\cos^2 \theta$ to $1 - \sin^2 \theta$ in order to get a quadratic in terms of *sin*.

Test Your Understanding

Edexcel C3 June 2013 (R)

6. (ii) Solve, for $0 \le \theta \le 2\pi$, the equation

$$3\sec^2\theta + 3\sec\theta = 2\tan^2\theta$$

You must show all your working. Give your answers in terms of π .

(6)

 $3 \sec^2 \theta + 3 \sec \theta = 2(\sec^2 \theta - 1)$

Solve, for $0 \le x < 2\pi$, the equation $2cosec^2x + \cot x = 5$ giving your solutions to 3sf.