New Identities

$$
\sin ^{2} x+\cos ^{2} x=1
$$

There are just two new identities you need to know:

Dividing by $\cos ^{2} x$:

Dividing by $\sin ^{2} x$:
"Prove that $1+\tan ^{2} x \equiv \sec ^{2} x$."
$\sin ^{2} x+\cos ^{2} x \equiv 1$
$\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x} \equiv \frac{1}{\cos ^{2} x}$
$\tan ^{2} x+1 \equiv \sec ^{2} x$

Examples

[Textbook] Prove that $\operatorname{cosec}^{4} \theta-\cot ^{4} \theta=\frac{1+\cos ^{2} \theta}{1-\cos ^{2} \theta}$

Solve the equation $4 \operatorname{cosec}^{2} \theta-9=\cot \theta$ in the interval $0 \leq \theta \leq 360^{\circ}$

This is just like in AS; if you had say a mixture of
$\sin \theta, \sin ^{2} \theta, \cos ^{2} \theta:$ you'd
change the $\cos ^{2} \theta$ to $1-\sin ^{2} \theta$
in order to get a quadratic in
terms of \sin.

Test Your Understanding

Edexcel C3 June 2013 (R)

6. (ii) Solve, for $0 \leq \theta<2 \pi$, the equation

$$
3 \sec ^{2} \theta+3 \sec \theta=2 \tan ^{2} \theta
$$

You must show all your working. Give your answers in terms of π.

$$
\begin{equation*}
3 \sec ^{2} \theta+3 \sec \theta=2\left(\sec ^{2} \theta-1\right) \tag{6}
\end{equation*}
$$

Q
Solve, for $0 \leq x<2 \pi$, the equation

$$
2 \operatorname{cosec}^{2} x+\cot x=5
$$

giving your solutions to 3sf.

