Using sec, cosec, cot

Questions in the exam usually come in two flavours: (a) 'provey' questions requiring to prove some identity and (b) 'solvey' questions.

[Textbook]

- (a) Simplify $\sin \theta \cot \theta \sec \theta$
- (b) Simplify $\sin \theta \cos \theta \ (\sec \theta + \csc \theta)$
- (c) Prove that $\frac{\cot \theta \ cosec \ \theta}{\sec^2 \theta + cosec^2 \ \theta} \equiv \cos^3 \theta$

Tip 1: Get everything in terms of sin and cos first (using $\cot x = \frac{\cos x}{\sin x}$ rather than $\cot x = \frac{1}{\tan x}$)

Tip 2: Whenever you have algebraic fractions being added/subtracted, whether $\frac{a}{b}+\frac{c}{d}$ or $\frac{a}{b}+c$, combine them into one (as we can typically then use $\sin^2 x + \cos^2 x = 1$)

Test Your Understanding

 $\sec x - \cos x \equiv \sin x \tan x$