Chapter 5 - Statistics

Probability Year 1

Chapter Overview

1. Basic probability

2. Venn diagrams
3. Mutually Exclusive / Independent Events
4. Tree diagrams

3	3.1	Understand and use mutually exclusive and independent events when calculating probabilities.	Venn diagrams or tree diagrams may be used. Set notation to describe events may be used. Use of $\mathrm{P}(B \mid A)=\mathrm{P}(B), \mathrm{P}(A \mid B)=\mathrm{P}(A)$,
		Link to discrete and continuous distributions.	$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$ in connection with independent events. No formal knowledge of probability density functions is required but students should understand that area under the curve represents probability in the case of a continuous distribution.

(Set notation may be used in Year 1 - will be seen more commonly in Year 2)

Probability concepts

An experiment is a repeatable process that gives rise a number a number of outcomes.

An event is a set of one or more of these outcomes.
(We often use capital letters to represent them)
$E=$ "rolling an even number"
$P=$ "rolling a prime number"

A sample space is the set of all possible outcomes.

Because we are dealing with sets, we can use a Venn diagram, where

- the numbers are the individual outcomes,
- the sample space is a rectangle and
- the events are sets, each a subset of the sample space.
You do not need to use set notation like \cap and U in this module (but ordinarily you would!)

Example

Two fair spinners each have four sectors numbered 1 to 4. The two spinners are spun together and the sum of the numbers indicated on each spinner is recorded.
Find the probability of the spinners indicating a sum of
(a) exactly 5
(b) more than 5

Another Example

The table shows the times taken, in minutes, for a group of students to complete a number puzzle.

Time, t (min)	$5 \leq t<7$	$7 \leq t<9$	$9 \leq t<11$	$11 \leq t<13$	$13 \leq t<15$
Frequency	6	13	12	5	4

A student is chosen at random. Find the probability for a group of students to complete a number puzzle
(a) In under 9 minutes (b) in over 10.5 minutes.

