### **Histograms**

You should remember from GCSE that there are some important differences between bar charts and histograms. We will consider 4 important skills.



### Example

1. Calculate the missing values in the table below

| Weight (w kg) | Frequency | Frequency Density |
|---------------|-----------|-------------------|
| 0 < w ≤ 10    | 40        |                   |
| 10 < w ≤ 15   | 6         |                   |
| 15 < w ≤ 35   |           | 2.6               |
| 35 < w ≤ 45   |           | 1                 |

### 2. Calculate the frequencies



### 1. Let's consider the area of the bars:

# **Example**

There were 60 runners in a 100m race. The following histogram represents their times. Determine the number of runners with times above 14s.



Total frequency is known; therefore find total area and hence the 'scaling'.

Then use this scaling along with the desired area.

# **Test Your Understanding**

A policeman records the speed of the traffic on a busy road with a 30 mph speed limit. He records the speeds of a sample of 450 cars. The histogram in Figure 2 represents the results.



(a) Calculate the number of cars that were exceeding the speed limit by at least 5 mph in the sample. (4 marks)

(b) Estimate the value of the mean speed of the cars in the sample. (3 marks)

(c) Estimate, to 1 decimal place, the value of the median speed of the cars in the sample.(2)

# 2. Let's Consider the gaps between the classes:

### Example



# 3. Let's consider the width and height on the diagram

An exam favourite is to ask what width and height we'd draw a bar in a drawn histogram.

#### Example:

The frequency table shows some running times. On a histogram the bar for 0-4 seconds is drawn with width 6cm and height 8cm. Find the width and height of the bar for 4-6 seconds.

| Time (seconds) | Frequency |  |
|----------------|-----------|--|
| $0 \le t < 4$  | 8         |  |
| 4 ≤ t < 6      | 9         |  |

| - |   |   |
|---|---|---|
|   | n | ٠ |
|   | ν |   |

### 0 -4 class

Class width = Drawn width = Scaling =

Frequency Density (height) = Drawn height = Scaling =

#### 4-6 class:

# **Test Your Understanding**

[May 2009 Q3] The variable x was measured to the nearest whole number. Forty observations are given in the table below.

| x         | 10 – 15 | 16 – 18 | 19 – |
|-----------|---------|---------|------|
| Frequency | 15      | 9       | 16   |

A histogram was drawn and the bar representing the 10-15 class has a width of 2 cm and a height of 5 cm. For the 16-18 class find

# 4. Forming a frequency polygon

Recall that a frequency polygon can be drawn by using the midpoint of each interval. This corresponds to the midpoint of the top of each bar in a histogram.



Exercise 3D Pg 50

Supplementary questions on printed sheet

Exercise 3E Pg 53