Sketching $y=|f(x)|$ and $y=f(|x|)$

It is important to understand the difference between $y=|f(x)|$ and $y=f(|x|)$ and to be able to graph each of these.

The graph below shows $y=f(x)$ where $f(x)=(x-3)(x+1)$. Sketch $y=|f(x)|$ and $y=f(|x|)$
$y=f(x)$

$$
y=|f(x)|
$$

$y=f(|x|)$

Test your understanding

Figure 2 shows part of the curve with equation $y=\mathrm{f}(x)$.
The curve passes through the points $P(-1.5,0)$ and $Q(0,5)$ as shown.
On separate diagrams, sketch the curve with equation
(a) $y=|\mathrm{f}(x)|$
(b) $y=\mathrm{f}(|x|)$

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

Test your understanding

Sketch for $-2 \pi \leq x \leq 2 \pi$:
a) $y=|\sin (x)|$
b) $y=\sin (|x|)$

Extension

[SMC 2008 Q25] What is the area of the polygon forms by all the points (x, y) in the plane satisfying the inequality $||x|-2|+||y|-2| \leq 4$?
A 24
B 32
C 64
D 96
E 112

