Sketching y = |f(x)| and y = f(|x|)

It is important to understand the difference between y = |f(x)| and y = f(|x|) and to be able to graph each of these.

The graph below shows y = f(x) where f(x) = (x - 3)(x + 1). Sketch y = |f(x)| and y = f(|x|)

y = f(x)

y = |f(x)|

y = f(|x|)

Test your understanding

Figure 2 shows part of the curve with equation y = f(x). The curve passes through the points P(-1.5, 0) and Q(0, 5) as shown.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|$$
 (2)

(b)
$$y = f(|x|)$$
 (2)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

Test your understanding

Sketch for $-2\pi \le x \le 2\pi$:

- a) $y = |\sin(x)|$
- b) $y = \sin(|x|)$

Extension

[SMC 2008 Q25] What is the area of the polygon forms by all the points (x, y)in the plane satisfying the inequality $||x|-2|+||y|-2| \le 4$?

- A 24
- B 32
- C 64 D 96 E 112