\square

Why must the function be one-to-one for an inverse function to exist?

How do we find an inverse function?

Example
Steps

1. If $f(x)=3-4 x$, find $f^{-1}(x)$
2. If $f(x)=\frac{x+2}{2 x-1}, x \neq \frac{1}{2}$, determine $f^{-1}(x)$

The domain of $f(x)$ is the range of $f^{-1}(x)$ and vice versa.

Example

If $g(x)$ is defined as $g(x)=\sqrt{x-2}\{x \in \mathbb{R}, x \geq 2\}$
a) Find the range of $g(x)$.
b) Calculate $g^{-1}(x)$
c) Sketch the graphs of both functions.
d) State the domain and range of $g^{-1}(x)$.

Test your understanding

The function f is defined by

$$
f: x \rightarrow e^{x}+2, \quad x \in \mathbb{R}
$$

(a) Find f^{-1}, the inverse function of f, stating its domain.
(b) On the same axe sketch the curves with equation $y=f(x)$ and $y=f^{-1}(x)$, giving the coordinates of all the points where the curves cross the axes.

