Other measures of location

Quartiles

Listed Data

Items	\boldsymbol{n}	Position of LQ \& UQ	LQ \& UQ
$1,4,7,9,10$	5		
$4,9,10,15$	4		
$2,4,5,7,8,9,11$	7		
$1,2,3,5,6,9,9,10,11,12$	10		

Quartiles - Listed Data

Grouped Data

Items	\boldsymbol{n}	Position of LQ \& UQ	LQ \& UQ
$1,4,7,9,10$	5		
$4,9,10,15$	4		
$2,4,5,7,8,9,11$	7		
$1,2,3,5,6,9,9,10,11,12$	10		

Quartiles - Grouped Data

Percentiles

Notation

Lower Quartile:
Upper Quartile:

Median:
$57^{\text {th }}$ Percentile:

Measures of Spread

The interquartile range and interpercentile range are examples of measures of spread.

> Interquartile Range = Upper Quartile - Lower Quartile

Why might we favour the interquartile range over the range?

Test your understanding

Age of relic (years)	Frequency
$0-1000$	24
$1001-1500$	29
$1501-1700$	12
$1701-2000$	35

Shark length (cm)	Frequency
$40 \leq x<100$	17
$100 \leq x<300$	5
$300 \leq x<600$	8
$600 \leq x<1000$	11

Q1) S1 May 2013 Q4 (continued)

The following table summarises the times, t minutes to the nearest minute, recorded for a group of students to complete an exam.

Time (minutes) t	$11-20$	$21-25$	$26-30$	$31-35$	$36-45$	$46-60$
Number of students f	62	88	16	13	11	10

(c) Show that the estimated value of the lower quartile is 18.6 to 3 significant figures.
(d) Estimate the interquartile range of this distribution.

Q2) S1 June 2005 Q2
The following table summarises the distances, to the nearest km , that 134 examiners travelled to attend a meeting in London.

Distance (km)	Number of examiners
$41-45$	4
$46-50$	19
$51-60$	53
$61-70$	37
$71-90$	15
$91-150$	6

(c) Use interpolation to estimate the median Q_{2}, the lower quartile Q_{1}, and the upper quartile Q_{3} of these data.

Q3) The ages of 300 houses in a village are recorded given the following table of results.

Age a (years)	Number of houses
$0 \leq a<20$	36
$20 \leq a<40$	92
$40 \leq a<60$	74
$60 \leq a<100$	39
$100 \leq a<200$	14
$200 \leq a<300$	27
$300 \leq a<500$	18

Use linear interpolation to estimate the lower quartile, upper quartile and hence the interquartile range.

Q4)

A cyber-café recorded how long each user stayed during one day giving the following results.

Length of stay (minutes)	Number of houses
$0 \leq l<30$	15
$30 \leq l<60$	31
$60 \leq l<90$	32
$90 \leq l<120$	23
$120 \leq l<240$	17
$240 \leq l<360$	2

Use linear interpolation to estimate:
a) The lower quartile.
b) The upper quartile.
c) The $90^{\text {th }}$ percentile.

Q5)

Distance (to the nearest mile)	Number of commuters
$0-9$	10
$10-19$	19
$20-29$	43
$30-39$	25
$40-49$	8
$50-59$	6
$60-69$	5
$70-79$	3
$80-89$	1

Find the interquartile range for the distance travelled by commuters.

