Other measures of location

Quartiles

<u>Listed Data</u>

Items	n	Position of LQ & UQ	LQ & UQ
1,4,7,9,10	5		
4,9,10,15	4		
2,4,5,7,8,9,11	7		
1,2,3,5,6,9,9,10,11,12	10		

Quartiles –	Listed	Data

Grouped Data

Items	n	Position of LQ & UQ	LQ & UQ
1,4,7,9,10	5		
4,9,10,15	4		
2,4,5,7,8,9,11	7		
1,2,3,5,6,9,9,10,11,12	10		

<u>Percentiles</u>

Notation

Lower Quartile:

Median:

Upper Quartile:

57th Percentile:

Measures of Spread

The interquartile range and interpercentile range are examples of measures of spread.

Interquartile Range = Upper Quartile - Lower Quartile

Why might we favour the interquartile range over the range?

Test your understanding

Age of relic (years)	Frequency
0-1000	24
1001-1500	29
1501-1700	12
1701-2000	35

Shark length (cm)	Frequency
$40 \le x < 100$	17
$100 \le x < 300$	5
$300 \le x < 600$	8
$600 \le x < 1000$	11

Q1) S1 May 2013 Q4 (continued)

The following table summarises the times, *t* minutes to the nearest minute, recorded for a group of students to complete an exam.

Time (minutes) t	11 – 20	21 – 25	26 - 30	31 – 35	36 - 45	46 - 60
Number of students f	62	88	16	13	11	10

(c) Show that the estimated value of the lower quartile is 18.6 to 3 significant figures.

(*d*) Estimate the interquartile range of this distribution.

(2)

(1)

Q2) S1 June 2005 Q2

The following table summarises the distances, to the nearest km, that 134 examiners travelled to attend a meeting in London.

Distance (km)	Number of examiners
41–45	4
46–50	19
51–60	53
61–70	37
71–90	15
91–150	6

(c) Use interpolation to estimate the median Q_2 , the lower quartile Q_1 , and the upper quartile Q_3 of these data.

Q3) The ages of 300 houses in a village are recorded given the following table of results.

Age a (years)	Number of houses
$0 \le a < 20$	36
$20 \le a < 40$	92
$40 \le a < 60$	74
$60 \le a < 100$	39
$100 \le a < 200$	14
$200 \le a < 300$	27
$300 \le a < 500$	18

Use linear interpolation to estimate the lower quartile, upper quartile and hence the interquartile range.

Q4)

A cyber-café recorded how long each user stayed during one day giving the following results.

Length of stay	Number of houses
(minutes)	
$0 \le l < 30$	15
$30 \le l < 60$	31
$60 \le l < 90$	32
$90 \le l < 120$	23
$120 \le l < 240$	17
$240 \le l < 360$	2

Use linear interpolation to estimate:

- a) The lower quartile.
- b) The upper quartile.
- c) The 90th percentile.

	-
Distance	Number of
(to the nearest mile)	commuters
0 – 9	10
10 – 19	19
20 – 29	43
30 – 39	25
40 – 49	8
50 – 59	6
60 – 69	5
70 – 79	3
80 – 89	1

Find the interquartile range for the distance travelled by commuters.