Finding the Median

You need to be able to find the median of both listed data and of grouped data.

	Listed data			
ltems		n	Position of median	Median
	1,4,7,9,10	5		
	4,9,10,15	4		
	2,4,5,7,8,9,11	7		
1,2,3,5,6,9,9,10,11,12		10		

Can you think of a rule to find the position of the median given n?

Grouped data					
IQ of L6Ms2 (<i>q</i>)	Frequency (f)				
$80 \le q < 90$	7				
$90 \le q < 100$	5				
$100 \le q < 120$	3				
$120 \le q < 200$	2				

Position to use for median:

Linear Interpolation

Height of tree (m)	Freq	C.F.
$0.55 \le h < 0.6$	55	55
$0.6 \le h < 0.65$	45	100
$0.65 \le h < 0.7$	30	130
$0.7 \leq h < 0.75$	15	145
$0.75 \le h < 0.8$	5	150

<u>Formula</u>

Examples

Weight of cat (kg)	Freq	C.F.
$1.5 \le w < 3$	10	10
$3 \le w < 4$	8	18
$4 \le w < 6$	14	32

Time (s)	Freq	C.F.
$8 \le t < 10$	4	4
$10 \le t < 12$	3	7
$12 \le t < 14$	13	20

Class width

Weight of cat to nearest kg	Frequency
10 – 12	7
13 – 15	2
16 – 18	9
19 – 20	4

Linear Interpolation with gaps

Example

Summarised below are the distances, to the nearest mile, travelled to work by a random sample of 120 commuters.

Distance	Number of
(to the nearest mile)	commuters
0 - 9	10
10 - 19	19
20 - 29	43
30 - 39	25
40 - 49	8
50 - 59	6
60 - 69	5
70 – 79	3
80 - 89	1

For this distribution,

(a) describe its shape	(h)
(d) Second is shape,	(1)
(b) use linear interpolation to estimate its median.	(2)

Test Your Understanding

Use linear interpolation to estimate the median of the following:

1)	Age of relic (years)	Frequency
	0-1000	24
	1001-1500	29
	1501-1700	12
	1701-2000	35

2)

Shark length (cm)	Frequency
$40 \le x < 100$	17
$100 \le x < 300$	5
$300 \le x < 600$	8
$600 \le x < 1000$	10

Supplementary Exercise 1

Q1) Solomon Paper A Q5b

The number of patients attending a hospital trauma clinic each day was recorded over several months, giving the data in the table below.

Number of patients	10 - 19	20 - 29	30 - 34	35 - 39	40 - 44	45 - 49	50 - 69
Frequency	2	18	24	30	27	14	5

Use linear interpolation to estimate the median of these data.

Q2) Solomon Paper E Q4a

The ages of 300 houses in a village are recorded given the following table of results.

Age a (years)	Number of houses
$0 \le a < 20$	36
$20 \le a < 40$	92
$40 \le a < 60$	74
$60 \le a < 100$	39
$100 \le a < 200$	14
$200 \le a < 300$	27
$300 \le a < 500$	18

Use linear interpolation to estimate the median.

Q3) Solomon Paper L Q7a

A cyber-café recorded how long each user stayed during one day giving the following results.

Length of stay	Number of houses		
(minutes)			
$0 \le l < 30$	15		
$30 \le l < 60$	31		
$60 \le l < 90$	32		
$90 \le l < 120$	23		
$120 \le l < 240$	17		
$240 \le l < 360$	2		

Use linear interpolation to estimate the median of these data.

Q4) S1 May 2013 Q4

The following table summarises the times, *t* minutes to the nearest minute, recorded for a group of students to complete an exam.

Time (minutes) t	11 – 20	21 – 25	26 - 30	31 - 35	36 - 45	46 - 60
Number of students f	62	88	16	13	11	10

[You may use $\sum ft^2 = 134281.25$]

(a) Estimate the mean and standard deviation of these data. (5)

(b) Use linear interpolation to estimate the value of the median. (2)

Exercise 2C Pages 27-28