Finding the Median

You need to be able to find the median of both listed data and of grouped data.

Listed data Items \boldsymbol{n} Position of median Median $1,4,7,9,10$ 5 $4,9,10,15$ 4 $2,4,5,7,8,9,11$ 7 $1,2,3,5,6,9,9,10,11,12$ 10 Can you think of a rule to find the position of the median given $n ?$

Grouped data

IQ of L6Ms2 (\boldsymbol{q})	Frequency (\boldsymbol{f})
$80 \leq q<90$	7
$90 \leq q<100$	5
$100 \leq q<120$	3
$120 \leq q<200$	2

Position to use for median:

Linear Interpolation

Height of tree (m)	Freq	C.F.
$0.55 \leq h<0.6$	55	55
$0.6 \leq h<0.65$	45	100
$0.65 \leq h<0.7$	30	130
$0.7 \leq h<0.75$	15	145
$0.75 \leq h<0.8$	5	150

Formula

Examples

Weight of cat (kg)	Freq	C.F.
$1.5 \leq w<3$	10	10
$3 \leq w<4$	8	18
$4 \leq w<6$	14	32

Time (s)	Freq	C.F.
$8 \leq t<10$	4	4
$10 \leq t<12$	3	7
$12 \leq t<14$	13	20

Class width

Weight of cat to nearest kg	Frequency
$10-12$	7
$13-15$	2
$16-18$	9
$19-20$	4

Linear Interpolation with gaps

Example

Summarised below are the distances, to the nearest mile, travelled to work by a random sample of 120 commuters.

Distance (to the nearest mile)	Number of commuters
$0-9$	10
$10-19$	19
$20-29$	43
$30-39$	25
$40-49$	8
$50-59$	6
$60-69$	5
$70-79$	3
$80-89$	1

For this distribution,
(a) describe its shape,
(b) use linear interpolation to estimate its median.

Test Your Understanding

Use linear interpolation to estimate the median of the following:
1)

Age of relic (years)	Frequency
$0-1000$	24
$1001-1500$	29
$1501-1700$	12
$1701-2000$	35

2)

Shark length (cm)	Frequency
$40 \leq x<100$	17
$100 \leq x<300$	5
$300 \leq x<600$	8
$600 \leq x<1000$	10

Supplementary Exercise 1

Q1) Solomon Paper A Q5b

The number of patients attending a hospital trauma clinic each day was recorded over several months, giving the data in the table below.

Number of patients	$10-19$	$20-29$	$30-34$	$35-39$	$40-44$	$45-49$	$50-69$
Frequency	2	18	24	30	27	14	5

Use linear interpolation to estimate the median of these data.

Q2) Solomon Paper E Q4a

The ages of 300 houses in a village are recorded given the following table of results.

Age a (years)	Number of houses
$0 \leq a<20$	36
$20 \leq a<40$	92
$40 \leq a<60$	74
$60 \leq a<100$	39
$100 \leq a<200$	14
$200 \leq a<300$	27
$300 \leq a<500$	18

Use linear interpolation to estimate the median.

Q3) Solomon Paper L Q7a

A cyber-café recorded how long each user stayed during one day giving the following results.

Length of stay (minutes)	Number of houses
$0 \leq l<30$	15
$30 \leq l<60$	31
$60 \leq l<90$	32
$90 \leq l<120$	23
$120 \leq l<240$	17
$240 \leq l<360$	2

Use linear interpolation to estimate the median of these data.

Q4) S1 May 2013 Q4

The following table summarises the times, t minutes to the nearest minute, recorded for a group of students to complete an exam.

Time (minutes) t	$11-20$	$21-25$	$26-30$	$31-35$	$36-45$	$46-60$
Number of students f	62	88	16	13	11	10

[You may use $\sum \mathrm{ft}{ }^{2}=134281.25$]
(a) Estimate the mean and standard deviation of these data.
(5)
(b) Use linear interpolation to estimate the value of the median.
(2)

