Composite Functions

\square

Examples

1. Let $f(x)=x^{2}+1$, and $g(x)=4 x-2$. Find
a) $f g(2)$
b) $f g(x)$
c) $g f(x)$
d) $f^{2}(x)$

Solve $g f(x)=38$
2. The functions f and g are defined by

$$
f: x \rightarrow|2 x-8| g: x \rightarrow \frac{x+1}{2}
$$

a) Find $f g(3)$
b) Solve $f g(x)=x$

Test your understanding

1. The functions and f and g are defined by

$$
\begin{gathered}
f: x \rightarrow 2|x|+3, \quad x \in \mathbb{R} \\
g: x \rightarrow 3-4 x, \quad x \in \mathbb{R}
\end{gathered}
$$

a) Find $f g(1)$
b) Solve the equation

$$
g g(x)+[g(x)]^{2}=0
$$

2. The functions f and g are defined by

$$
f: x \rightarrow e^{x}+2, \quad x \in \mathbb{R} g: x \rightarrow \ln x, \quad x>0
$$

a) Find $f g(x)$, giving your answer in its simplest form.

Extension

[MAT 2014 1F]

The functions S and T are defined for real numbers by $S(x)=x+1$ and $T(x)=-x$.
The function S is applied s times and the function T is applied t times, in some order, to produce the function

$$
F(x)=8-x
$$

It is possible to deduce that:
i) $s=8$ and $t=1$
ii) s is odd and t is even.
iii) s is even and t is odd.
iv) s and t are powers of 2 .
v) none of the above.
[MAT 2012 Q2]
Let $f(x)=x+1$ and $g(x)=2 x$.
i) Show that $f^{2} g(x)=g f(x)$
ii) Note that $g f^{2} g(x)=4 x+4$

Find all the other ways of combining f and g
that result in the function $4 x+4$.
iii) Let $i, j, k \geq 0$ be integers. Determine the function

$$
f^{i} g f^{j} g f^{k}(x)
$$

iv) Let $m \geq 0$ be an integer. How many different ways of combining the functions f and g are there that result in the function $4 x+4 m$?

