Dealing with Improper Fractions

In Pure Year 1, we saw that the 'degree' of a polynomial is the highest power, e.g. a quadratic has degree 2.

An algebraic fraction is **improper** if the degree of the numerator is **at least** the degree of the denominator.

$$\frac{x^2-3}{x+2}$$

$$\frac{x+1}{x-1}$$

 $\frac{x^3-x^2+3}{x^2-x}$

A partial fraction is still improper if the degree is the same top and bottom.

Reducing to Quotient and Remainder

You know for example that as $7 \div 3 = 2 \ rem \ 1$, we could write:

$$\frac{7}{3} = 2 + \frac{1}{3}$$

Similarly in general:

$$\frac{F(x)}{divisor} = Q(x) + \frac{remainder}{divisor}$$
Quotient

If $\frac{x^2+5x-9}{x+2} = Ax + B + \frac{C}{x+2}$, determine the values of A, B and C.

Test Your Understanding

Edexcel C4 June 2013 Q1

Given that

$$\frac{3x^4-2x^3-5x^2-4}{x^2-4} \equiv ax^2+bx+c+\frac{dx+e}{x^2-4}, \quad x \neq \pm 2$$

find the values of the constants a, b, c, d and e.

Fro Tip: There's a missing x term in the numerator and missing x term in the denominator. Use +0x to avoid gaps.

(4)

Dealing with Improper Fractions

Split $\frac{3x^2-3x-2}{(x-1)(x-2)}$ into partial fractions.

Test Your Understanding

C4 Jan 2013 Q3

Express
$$\frac{9x^2 + 20x - 10}{(x+2)(3x-1)}$$
 in partial fractions.

(4)