1A Exponential Models

\boldsymbol{t}	3	5	6	8	9	11
\boldsymbol{g}	1.04	1.49	1.79	2.58	3.1	4.46

1. The table above shows some data collected on the temperature, in ${ }^{\circ} \mathrm{C}$, of a colony of bacteria (t), and its growth rate (g).

The data are coded using the changes of variable $x=t$ and $y=\log g$. The regression line of y on x is found to be:
$y=-0.2215+0.0792 x$
a) Mika says that the constant -0.2215 in the regression line means that the colony is shrinking when the temperature is $0^{\circ} \mathrm{C}$. Explain why Mika is wrong.
b) Given that the data can be modelled by an equation of the form $g=k b^{t}$, where k and b are constants, find the values of k and b.

