10C Newton Raphson

1. The diagram shows part of the curve with equation y = f(x), where $f(x) = x^3 + 2x^2 - 5x - 4$.

The point *A*, with x-coordinate *p*, is a stationary point on the curve.

The equation f(x)=0 has a root, α , in the interval 1.8 < α < 1.9.

a) Explain why $x_0 = p$ is not suitable to use as a first approximation to α when applying the Newton-Raphson method to f(x)

b) Using $x_0 = 2$ as a first approximation to α , apply the Newton-Raphson method procedure twice to find a new approximation for α , to 3dp.

c) By considering the change of sign in f(x) over an appropriate interval, show that your answer to part b is accurate to 3 decimal places