10C Newton Raphson

1. The diagram shows part of the curve with equation $y=f(x)$, where $f(x)=x^{3}+2 x^{2}-$ $5 x-4$.

The point A, with x -coordinate p, is a stationary point on the curve.
The equation $\mathrm{f}(\mathrm{x})=0$ has a root, α, in the interval $1.8<\alpha<1.9$.
a) Explain why $x_{0}=p$ is not suitable to use as a first approximation to α when applying the Newton-Raphson method to $f(x)$

b) Using $x_{0}=2$ as a first approximation to α, apply the Newton-Raphson method procedure twice to find a new approximation for α, to 3 dp .
c) By considering the change of sign in $f(x)$ over an appropriate interval, show that your answer to part b is accurate to 3 decimal places

