THE NEWTON-RAPHSON METHOD

The Newton- Raphson method can be used to find numerical solutions to equations of the form $f(x)=0$. You need to be able to differentiate $f(x)$ in order to use this method.

The Newton- Raphson formula is:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Example 1

Recall that in lesson 1 we saw that the function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}-\boldsymbol{\operatorname { c o s }}(\boldsymbol{x})$ has a root, α, in the interval $0<\alpha<1$.

Using $x_{0}=0.5$ as a first approximation to α, apply the Newton-Raphson procedure three times to find a better approximation to α which, in this case, will be accurate to 7 decimal places.

To perform iterations quickly, do the following on your calculator:
[0.5] [=]
[ANS] - (ANS - cos(ANS))/(1 + $\sin (A N S))$

Then press [=].

Example 2

$$
f(x)=\frac{1}{2} x^{4}-x^{3}+x-3
$$

The equation $\mathrm{f}(x)=0$ has a root β in the interval $[-2,-1]$.
(c) Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to β.
Give your answer to 2 decimal places.

Example 3

 Edexcel FP1 Jan 2010 Q2c$$
\mathrm{f}(x)=3 x^{2}-\frac{11}{x^{2}}
$$

(c) Taking 1.4 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α, giving your answer to 3 decimal places.

When does Newton-Raphson fail?

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

If the starting value x_{0} was the stationary point, then $f^{\prime}\left(x_{0}\right)=0$,
resulting in a division by 0 in the above formula.
Graphically, it is because the tangent will never reach the x-axis.

Newton-Raphson also suffers from the same drawbacks as solving by iteration, in that it is possible for the values of x_{i} to diverge.
In this example, the x_{i} oscillate either side of 0 , but get gradually further away from $\alpha=0$.

