10B Iterations

1. Given that $f(x)=x^{2}-4 x+1$
a) Show that the equation $f(x)=0$ can be written as $x=4-\frac{1}{x}, x \neq 0$.

The equation $f(x)$ has a root, α, in the interval $3<x<4$.
b) Use the iterative formula
$x_{n+1}=4-\frac{1}{x_{n}}$, with $x_{0}=3$ to find the value of x_{1}, x_{2} and x_{3}.
2.

$$
f(x)=x^{3}-3 x^{2}-2 x+5
$$

a) Show that the equation $f(x)=0$ has a root in the interval $3<x<4$
b) Use the iterative formula:

$$
x_{n+1}=\sqrt{\frac{x_{n}^{3}-2 x_{n}+5}{3}}
$$

To calculate the values of x_{1}, x_{2} and x_{3}, giving answers to 4 decimal places, when:
i) $x_{0}=1.5 \quad$ ii) $x_{0}=4$

