ITERATION

To solve $f(x)=\mathbf{0}$ by an iterative method, rearrange into a form $\boldsymbol{x}=\boldsymbol{g}(\boldsymbol{x})$ and use the iterative formula $x_{n+1}=g\left(x_{n}\right)$

Example 1
 Edexcel C3 Jan 2013

$$
\mathrm{g}(x)=\mathrm{e}^{x-1}+x-6
$$

(a) Show that the equation $\mathrm{g}(x)=0$ can be written as

$$
\begin{equation*}
x=\ln (6-x)+1, \quad x<6 . \tag{2}
\end{equation*}
$$

The root of $\mathrm{g}(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2 .
$$

is used to find an approximate value for α.
(b) Calculate the values of x_{1}, x_{2} and x_{3} to 4 decimal places.
(c) By choosing a suitable interval, show that $\alpha=2.307$ correct to 3 decimal places.
a)
b) $\quad x_{1}, x_{2}, x_{3}$ represent successively better approximations of the root

Initially type x_{0} (i.e. 2) onto your calculator.
Now just type: $\quad \ln (6-A N S)+1$
And then press your $=$ key to get successive iterations.
c)

The starting value x_{0} matters.

- If there are a multiple roots, the iteration might converge to (i.e. approach) a different root.
- The iteration not converge to a root at all and diverges (i.e. approach infinity).

Example 2

$$
f(x)=x^{3}-3 x^{2}-2 x+5
$$

(a) Show that the equation $f(x)=0$ has a root in the interval $3<x<4$.
(b) Use the iterative formula $x_{n+1}=\sqrt{\frac{x_{n}^{3}-2 x_{n}+5}{3}}$ to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places, and taking:
(i) $x_{0}=1.5$
(ii) $x_{0}=4$

Staircase and cobweb diagrams

Example 3

$$
f(x)=x^{2}-8 x+4
$$

(a) Show that the root of the equation $f(x)=0$ can be written as $x=\sqrt{8 x-4}$
(b) Using the iterative formula $x_{n+1}=\sqrt{8 x_{n}-4}$, and starting with $x_{0}=1$, draw a staircase diagram, indicating x_{0}, x_{1}, x_{2} on your x-axis, as well as the root α.

