ITERATION

To solve f(x) = 0 by an iterative method, rearrange into a form x = g(x) and use the iterative formula $x_{n+1} = g(x_n)$

Example 1 Edexcel C3 Jan 2013 $g(x) = e^{x-1} + x - 6$ (a) Show that the equation g(x) = 0 can be written as $x = \ln(6 - x) + 1$, x < 6. (2) The root of g(x) = 0 is α . The iterative formula $x_{n+1} = \ln(6 - x_n) + 1$, $x_0 = 2$. is used to find an approximate value for α . (b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places. (3) (c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places. (3)

a)

b) x_1, x_2, x_3 represent successively better approximations of the root

Initially type x_0 (i.e. 2) onto your calculator. Now just type: $\ln(6 - ANS) + 1$ And then press your = key to get successive iterations.

The starting value x_0 matters.

- If there are a multiple roots, the iteration might converge to (i.e. approach) a different root.
- The iteration not converge to a root at all and **diverges** (i.e. approach infinity).

Example 2

$$f(x) = x^3 - 3x^2 - 2x + 5$$

- (a) Show that the equation f(x) = 0 has a root in the interval 3 < x < 4.
- (b) Use the iterative formula $x_{n+1} = \sqrt{\frac{x_n^3 2x_n + 5}{3}}$ to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places, and taking: (i) $x_0 = 1.5$ (ii) $x_0 = 4$

Staircase and cobweb diagrams

Example 3

$$f(x) = x^2 - 8x + 4$$

- (a) Show that the root of the equation f(x) = 0 can be written as $x = \sqrt{8x 4}$
- (b) Using the iterative formula $x_{n+1} = \sqrt{8x_n 4}$, and starting with $x_0 = 1$, draw a staircase diagram, indicating x_0, x_1, x_2 on your *x*-axis, as well as the root α .