U6 Pure Chapter 5

Radians

Course Structure

1: Converting between degrees and radians.

2: Find arc length and sector area (when using radians)

3: Solve trig equations in radians.

4: Small angle approximations

\(\left.$$
\begin{array}{l|l|l|l}\hline 5 & 5.1 & \begin{array}{l}\text { Understand and use the } \\
\text { definitions of sine, cosine } \\
\text { and tangent for all } \\
\text { arguments; }\end{array} & \begin{array}{l}\text { Use of } x \text { and } y \text { coordinates of points } \\
\text { on the unit circle to give cosine and } \\
\text { sine respectively, }\end{array}
$$

the sine and cosine rules;

the area of a triangle in the

form \frac{1}{2} a b \sin C

Work with radian measure,

including the ambiguous case of the

sine rule.\end{array}\right]\)| Use of the formulae $s=r \theta$ and |
| :--- |
| including use for arc length |
| and area of sector. |\quad| $A=\frac{1}{2} r^{2} \theta$ for arc lengths and areas of |
| :--- |
| sectors of a circle. |

Radians

Converting between radians and degrees

$90^{\circ}=$	$135^{\circ}=$
$\frac{\pi}{3}=$	$\frac{3}{2} \pi=$
$45^{\circ}=$	$72^{\circ}=$
$\frac{\pi}{6}=$	$\frac{5 \pi}{6}=$

It is useful to remember the standard angle conversions....
$45^{\circ}=$
$60^{\circ}=$
$270^{\circ}=$
$120^{\circ}=$

Graph Sketching with Radians

-1
$30^{\circ}=$
$135^{\circ}=$
$90^{\circ}=$

Test Your Understanding

Sketch the graph of $y=\cos \left(x+\frac{\pi}{2}\right)$ for $0 \leq x<2 \pi$

Sin, cos, tan of angles in radians
Reminder of laws from Year 1:

- $\sin (x)=\sin (180-x)$
- $\cos (x)=\cos (360-x)$
- \sin , \cos repeat every 360° but tan every 180°

In terms of radians:

- $\sin (x)=$
- $\cos (x)=$
- \sin , \cos repeat every \qquad but tan every \qquad .

To find sin/cos/tan of a 'common' angle in radians without using a calculator, it is easiest to just convert to degrees first.

Examples

1. $\cos \left(\frac{4 \pi}{3}\right)=$
2. $\sin \left(-\frac{7 \pi}{6}\right)=$

To find $\cos \left(\frac{4 \pi}{3}\right)$ directly using your calculator, you need to switch to radians mode. Press SHIFT \rightarrow SETUP, then ANGLE UNIT, then
Radians. An R will appear at the top of your screen, instead of D.

Arc length

Arc length in degrees $=$

Arc length in radians =

Examples

1. Find the length of the arc of a circle of radius 5.2 cm , given that the arc subtends an angle of 0.8 radians at the centre of the circle.
2. An $\operatorname{arc} A B$ of a circle with radius 7 cm and centre O has a length of 2.45 cm . Find the angle $\angle A O B$ subtended by the arc at the centre of the circle
3. An arc $A B$ of a circle, with centre O and radius $r \mathrm{~cm}$, subtends an angle of θ radians at O. The perimeter of the sector $A O B$ is $P \mathrm{~cm}$. Express r in terms of P and θ.
4. The border of a garden pond consists of a straight edge $A B$ of length 2.4 m , and a curved part C, as shown in the diagram. The curve part is an arc of a circle, centre O and radius 2 m . Find the length of C.

Test Your Understanding

Figure 1 shows the triangle $A B C$, with $A B=8 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and $\angle B A C=0.7$ radians. The $\operatorname{arc} B D$, where D lies on $A C$, is an arc of a circle with centre A and radius 8 cm . The region R, shown shaded in Figure 1, is bounded by the straight lines $B C$ and $C D$ and the arc $B D$.
Find

Sector Area

Area using Degrees =

Area using Radians =

Segment Area

Recall that the area of a triangle is $\frac{1}{2} a b \sin C$ where C is the 'included angle' (i.e. between a and b)

Area using radians:

Examples

1. In the diagram, the area of the minor sector $A O B$ is $28.9 \mathrm{~cm}^{2}$. Given that $\angle A O B=0.8$ radians, calculate the value of r.

2. A plot of land is in the shape of a sector of a circle of radius 55 m . The length of fencing that is erected along the edge of the plot to enclose the land is 176 m . Calculate the area of the plot of land.

3. In the diagram above, $O A B$ is a sector of a circle, radius 4 m . The chord $A B$ is 5 m long. Find the area of the shaded segment.

4. In the diagram, $A B$ is the diameter of a circle of radius $r \mathrm{~cm}$, and $\angle B O C=\theta$ radians. Given that the area of $\triangle A O C$ is three times that of the shaded segment, show that $3 \theta-4 \sin \theta=0$.

Test Your Understanding

6.

Figure 1
Figure 1 shows the sector $O A B$ of a circle with centre O, radius 9 cm and angle 0.7 radians.
(a) Find the length of the $\operatorname{arc} A B$.
(b) Find the area of the sector $O A B$.

The line $A C$ shown in Figure 1 is perpendicular to $O A$, and $O B C$ is a straight line.
(c) Find the length of $A C$, giving your answer to 2 decimal places.

The region H is bounded by the $\operatorname{arc} A B$ and the lines $A C$ and $C B$.
(d) Find the area of H, giving your answer to 2 decimal places.

Extension

[MAT 2012 1J]
If two chords $Q P$ and $R P$ on a circle of radius 1 meet in an angle θ at P, for example as drawn in the diagram on the left, then find the largest possible area of the shaded region $R P Q$, giving your answer in terms of θ.

Solving Trigonometric Equations

Solving trigonometric equations is virtually the same as you did in Year 1, except:
(a) Your calculator needs to be in radians mode.
(b) We use π - instead of $180^{\circ}-$, and so on.

Remember

- $\sin (x)=\sin (\pi-x)$
- $\cos (x)=\cos (2 \pi-x)$
- \sin , \cos repeat every 2π but tan every π

Example
Solve the equation
$\sin 3 \theta=\frac{\sqrt{3}}{2}$ in the interval $0 \leq \theta \leq 2 \pi$.

Test Your Understanding

[Jan 07 Q6]

Find all the solutions, in the interval $0 \leq x<2 \pi$, of the equation $2 \cos ^{2} x+1=5 \sin x$, giving each solution in terms of π. (6)

Extension

[MAT 2010 1C] In the range $0 \leq x \leq 2 \pi$, the equation $\sin ^{2} x+3 \sin x \cos x+$ $2 \cos ^{2} x=0$ has how many solutions?

Small Angle Approximations

Example

When θ is small, find the approximate value of:
a) $\frac{\sin 2 \theta+\tan \theta}{2 \theta}$
b) $\frac{\cos 4 \theta-1}{\theta \sin 2 \theta}$

Example

a) Show that, when θ is small,

$$
\sin 5 \theta+\tan 2 \theta-\cos 2 \theta \approx 2 \theta^{2}+7 \theta-1
$$

b) Hence state the approximate value of $\sin 5 \theta+\tan 2 \theta-\cos 2 \theta$ for small values of θ.

