3-4. Constant Acceleration Formulae (SUVAT Equations)

These formulae are used to solve problems where the object is moving in a straight line with constant acceleration for a specific period of time. You should memorise these and know how to derive them.

$$
v=
$$

For uniform acceleration, the average velocity is the average of v and u. Using the area of the graph (which we know gives distance):

Eliminating v - sub for v from equation 1 into equation 2 :
$s=$
(Equation 3)
Eliminating t - sub for t from equation 1 into equation 2 :

$$
v^{2}=
$$

Eliminating u - sub for u from equation 1 into equation 2 :

$$
s=
$$

- Work out what you know
- Work out what you need
- Choose the appropriate equation
- Diagrams help!
- Work out which direction will be positive
- Check that your units are consistent

Example

A stone slides in a straight line across a horizontal sheet of ice. It passes a point, A with velocity $14 \mathrm{~ms}^{-1}$ and a point, B 2.5 seconds later. Assuming the deceleration is uniform and that $A B=30 \mathrm{~m}$, find:
a) The deceleration
b) The velocity at B
c) How long after passing A the stone comes to rest

Example - Deceleration Leading to a Change in Direction

A particle travels with uniform deceleration $2 \mathrm{~ms}^{-2}$ in a horizontal line. The points A and B lie on the line and $A B=32 \mathrm{~m}$. At time $t=0$, the particle passes through A with velocity $12 \mathrm{~ms}^{-1}$ in the direction $A B$. Find:
a) The values of t when the particle is at B
b) The velocity of the particle for each of these values of t.

Test Your Understanding (EdExcel M1 May 2013 Q4)

A lorry is moving along a straight horizontal road with constant acceleration. The lorry passes a point A with speed $u \mathrm{~m} \mathrm{~s}^{-1},(u<34)$, and 10 seconds later passes a point B with speed $34 \mathrm{~m} \mathrm{~s}^{-1}$. Given that $A B=240 \mathrm{~m}$, find
(a) the value of u,
(b) the time taken for the lorry to move from A to the mid-point of $A B$.

5. Vertical Motion Under Gravity

The downwards acceleration under gravity is $g=9.8 \mathrm{~ms}^{-2}$.
ALWAYS state the positive direction in your calculations.
Quote final answers to 2 or 3 s.f. - you may be penalised if you quote more.

Example

A ball is thrown vertically upwards with a velocity of $14.7 \mathrm{~ms}^{-1}$ from a platform 19.6 m above the ground. Find:
a) The time taken for the ball to reach the ground
b) The velocity of the ball when it hits the ground

Example

A ball is projected vertically upwards from ground level at a speed of $20 \mathrm{~ms}^{-1}$. Determine the amount of time the ball is at least 10 m above ground level.

Example - When Two Particles are in Motion

Two stones are thrown from the same point at the same time - one vertically upwards with speed $30 \mathrm{~ms}^{-1}$ and one vertically downwards at $30 \mathrm{~ms}^{-1}$. Find how far apart the stones are after 3 seconds.

Test Your Understanding (EdExcel M1 May 2013 (R) Q4)

