Velocity-Time Graphs

Describe the motion of each object:

Acceleration the rate of change of velocity
(i.e. gradient of velocity-time graph)

The area under a velocity-time graph gives the distance travelled.

Example

The velocity-time graph shown is for a body which starts from rest, accelerates uniformly to a velocity of $8 \mathrm{~ms}^{-1}$ in 2 seconds, maintains that velocity for a further 5 seconds then decelerates uniformly to rest. The entire journey takes 11 seconds. Find:
a) The acceleration of the body during the initial part of the motion
b) The deceleration of the body during the final part of the motion
c) The total distance travelled by the body

Algebraic Example

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of $8 \mathrm{~ms}^{-1}$ in T seconds. The particle then travels at a constant velocity of $8 \mathrm{~ms}^{-1}$ for $5 T$ seconds. The particle then decelerates uniformly to rest in a further 40 s .
(a) Sketch a velocity-time graph to illustrate the motion of the particle.

Give then the total displacement of the particle is 600 m .
(b) find the value of T.

Test Your Understanding (EdExcel M1 May 2013 Q5)

A car is travelling along a straight horizontal road. The car takes 120 s to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 30 s until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
(a) Sketch, in the space below, a speed-time graph for the motion of the car between the two sets of traffic lights.
(b) Find the value of T.

A motorcycle leaves the first set of traffic lights 10 s after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, $a \mathrm{~m} \mathrm{~s}^{-2}$, and passes the car at the point A which is 990 m from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $22 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point A.
(d) Find the value of a.

