Chapter 9 - Mechanics

Constant Acceleration

Chapter Overview

- 1. Displacement-Time Graphs
- 2. Velocity-Time Graphs
- 3. Constant Acceleration Formulae (SUVAT)
- 4. Vertical Motion Under Gravity

Topics	What students need to learn:		
	Content		Guidance
7 Kinematics	7.1	Understand and use the language of kinematics: position; displacement; distance travelled; velocity; speed; acceleration.	
	7.2	Understand, use and interpret graphs in kinematics for motion in a straight line: displacement against time and interpretation of gradient; velocity against time and interpretation of gradient and area under the graph.	Derivation may use knowledge of Sections 7.2 and/or 7.4 Understand and use <i>suvat</i> formulae for constant acceleration in 2D.
7 Kinematics continued	7.3	Understand, use and derive the formulae for constant acceleration for motion in a straight line. Use calculus in kinematics for motion in a straight line: $v = \frac{dr}{dt}, a = \frac{dv}{dt} = \frac{d^2r}{dt^2}$	Derivation may use knowledge of sections 7.2 and/or 7.4 Understand and use <i>suvat</i> formulae for constant acceleration in 2D. The level of calculus required will be consistent with that in Sections 7 and 8 in Paper 1.
		$v = \frac{dr}{dt}, a = \frac{dv}{dt} = \frac{d^2r}{dt^2}$ $r = \int v dt, v = \int a dt$	

1. <u>Displacement-Time Graphs</u>

Describe the motion of each object:

Velocity is the rate of change of displacement (i.e. gradient of displacement-time graph)

Example (Exercise 9A Question 2)

Khalid drives from his home to a hotel. He drives for $2\frac{1}{2}$ hours at an average velocity of $60 \, \mathrm{km} \, \mathrm{h}^{-1}$. He then stops for lunch before continuing to his hotel. The diagram shows a displacement–time graph for Khalid's journey.

- a Work out the displacement of the hotel from Khalid's home.
- b Work out Khalid's average velocity for his whole journey.

