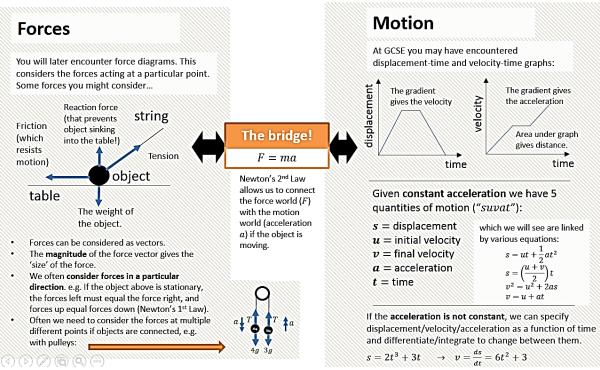
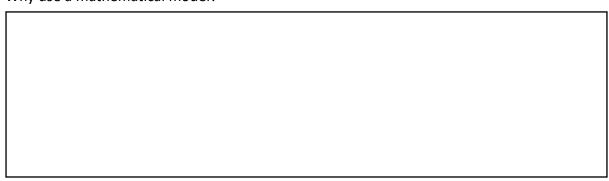
Chapter 8 - Mechanics Modelling in Mechanics

Chapter Overview

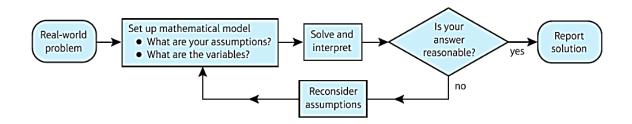

- 1. Constructing a Model
- 2. Modelling Assumptions
- 3. Quantities and Units
- 4. Working with Vectors

Topics	What students need to learn:		
	Content		Guidance
Quantities and units in mechanics	6.1	Understand and use fundamental quantities and units in the S.I. system: length, time, mass. Understand and use derived quantities and units: velocity, acceleration, force, weight.	

What is Mechanics?


Broadly speaking, mechanics covers motion, forces and how the two inter-relate with each other.

Mechanics, broadly speaking, concerns motion, forces, and how the two interrelate. This chapter just gives you an overview of what you'll be covering in Year 1 and how it all links together.



1. Constructing a Model

Why use a mathematical model?

The solution to a mathematical model needs to be interpreted in the context of the original problem. You may need to refine the model and reconsider your original assumptions.

Example (Textbook)

The motion of a basketball as it leaves a player's hand and passes through the net can be modelled using the equation $h = 2 + 1.1x - 0.1x^2$, where h m is the height of the basketball above the ground and x m is the horizontal distance travelled.

- a Find the height of the basketball: i when it is released ii at a horizontal distance of 0.5 m.
- **b** Use the model to predict the height of the basketball when it is at a horizontal distance of 15 m from the player.
- **c** Comment on the validity of this prediction.