Leftie Example

Let's simplify the problem by using just 3 people:
The probability a randomly chosen person is left-handed is 0.1 . If there is a group of 3
people, what is the probability that:
a) All 3 are left-handed.
b) 0 are left-handed.
c) 1 person is left-handed.
d) 2 people are left-handed.

Let's try to generalise!
If there were x 'lefties' out of 3 , then we can see, using the examples, that the probability of a single matching outcome is $0.1^{x} \times 0.9^{3-x}$. How many rows did we have each time? In a sequence of three L's and R's, there are "3 choose $x^{\prime \prime}$, i.e. $\binom{3}{x}$ ways of choosing x of the 3 letters to be L's. Therefore the probability of x out of 3 people being left handed is:
$0.1^{x} 0.9^{3-x}$

The Binomial Distribution

You can model a random variable X with a binomial distribution $B(n, p)$ if

- there are a fixed number of trials, n,
- there are two possible outcomes: 'success' and 'failure',
- there is a fixed probability of success, p
- the trials are independent of each other

If $X \sim B(n, p)$ then:

$$
P(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

In our example,
'success' was 'leftie'.
r is the number of successes out of n.
₹ "~" means "has the distribution"
On a table of 8 people, 6 people are left handed.
a) Suggest a suitable model for a random variable X : the number of left-handed people in a group of 8 , where the probability of being left-handed is 0.1 .
b) Find the probability 6 people are left handed.
c) Suggest why the chosen model may not have been appropriate.

The random variable $X \sim B\left(12, \frac{1}{6}\right)$. Find:

a) $P(X=2)$
b) $P(X=9)$
c) $P(X \leq 1)$

A company claims that a quarter of the bolts sent to them are faulty. To test this claim the number of faulty bolts in a random sample of 50 is recorded.
(a) Give two reasons why a binomial distribution may be a suitable model for the number of faulty bolts in the sample. (2)

Test Your Understanding

$1 \quad X \sim B(6,0.2)$
What is $P(X=2)$?
What is $P(X \geq 5)$?
2 I have a bag of 2 red and 8 white balls. X represents the number of red balls I chose after 5 selections (with replacement).

How is X distributed?
Determine the probability that I chose 3 red balls.

An awkward Tiffin boy ventures into Tiffin Girls. He asks 20 girls out on the date. The probability that each girl says yes is 0.3 .
Determine the probability that he will end up with:
a) Less than 6 girls on his next date.
b) At least 9 girls on his next date.

The boy considers the evening a success if he dated at least 9 girls that evening. He repeats this process across 5 evenings.

c) Calculate the probability that he had at least 4 successful evenings.
(Note: You won't be able to use your table for (c) as p is not a nice round number - calculate prob directly)

