6A Discreet Random Variables (DRVs)

1. Three fair coins are tossed.
a) Write down all the possible outcomes when the three coins are tossed.

A random variable, X, is defined as the number of heads when the three coins are tossed.
b) Write the probability distribution of X as:
i) A table
ii) A probability mass function
2. A biased four sided dice with faces numbered $1,2,3$ and 4 is rolled. The number on the bottom face is modelled as a random variable x.

Given that $P(X=x)=\frac{k}{x}$
a) Find the value of k
b) Give the probability distribution of X in table form.
c) Find the Probability that:
i) $\quad X>2$
ii) $1<x<4$
iii) $\quad X>4$
3. The spinner below is spun until it lands on red, or has been spun 4 times in total. Find the probability distribution of the random variable S, the number of times the spinner is spun.

6B The Binomial Distribution

1. Gary is playing chess against Nigel, and has a $\frac{2}{3}$ chance of winning each game.
a) If they play 5 games, what is the probability of Gary winning exactly 3?
b) Find the term containing x^{3} in the following expansion:

$$
(x+y)^{5}
$$

c) If the probability of Gary winning a chess match is $\frac{2}{3}$, find the probability of him winning exactly 3 games out of 5
d) Give the probability distribution of X in table form.

Notes:
2. Gary is playing chess against Nigel, and has a $\frac{2}{3}$ chance of winning each game. If they play 5 games, what is the probability of Gary winning exactly 3 ?
3. The random variable $X \sim B\left(12, \frac{1}{6}\right)$. Find:
a) $P(X=2)$
b) $P(X=9)$
c) $P(X \leq 1)$
4. The probability that a randomly chosen member of a reading group is left-handed is 0.15 . A random sample of 20 members of the group is taken.
a) Suggest a suitable model for the random variable X, the number of members in the sample who are left handed. Justify your choice.
b) Use your model to calculate the probability that:
i) Exactly 7 sample members are left handed
ii) Less than two members are left-handed

6C Cumulative Probabilities on The Binomial Distribution

1. The random variable $X \sim B(20,0.4)$. Find:
a) $P(X \leq 7)$
b) $P(X<6)$
c) $P(X \geq 15)$
2. A spinner is designed so that the probability it lands on red is 0.3 . Jane has 12 spins. Find the probability that Jane obtains:
a) No more than 2 reds
b) At least 5 reds
3. Jane decides to use this spinner for a class competition. She wants the probability of winning a prize to be less than 0.05 . Each member of the class has 12 spins and the number of reds is recorded.

Find how many reds should be needed to win a prize

